Intrinsic Vascular Repair by Endothelial Progenitor Cells in Acute Coronary Syndromes: an Update Overview

Abstract

Bone marrow-derived endothelial progenitor cells (EPCs) play a key role in the maintenance of endothelial homeostasis and endothelial repair at areas of vascular damage. The quantification of EPCs in peripheral blood by flow cytometry is a strategy to assess this reparative capacity. The number of circulating EPCs is inversely correlated with the number of cardiovascular risk factors and to the occurrence of cardiovascular events. Therefore, monitoring EPCs levels may provide an accurate assessment of susceptibility to cardiovascular injury, greatly improving risk stratification of patients with high cardiovascular risk, such as those with an acute myocardial infarction. However, there are many issues in the field of EPC identification and quantification that remain unsolved. In fact, there have been conflicting protocols used to the phenotypic identification of EPCs and there is still no consensual immunophenotypical profile that corresponds exactly to EPCs. In this paper we aim to give an overview on EPCs-mediated vascular repair with special focus on acute coronary syndromes and to discuss the different phenotypic profiles that have been used to identify and quantify circulating EPCs in several clinical studies. Finally, we will synthesize evidence on the prognostic role of EPCs in patients with high cardiovascular risk.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kong, D., Melo, L. G., Gnecchi, M., et al. (2004). Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation, 110(14), 2039–2046.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Asahara, T., Masuda, H., Takahashi, T., et al. (1999). Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circulation Research, 85(3), 221–228.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Asahara, T., Murohara, T., Sullivan, A., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., et al. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111(22), 2981–2987.

    Article  Google Scholar 

  5. 5.

    Aragona, C. O., Imbalzano, E., Mamone, F., et al. (2016). Endothelial progenitor cells for diagnosis and prognosis in cardiovascular disease. Stem Cells International, 2016, 8043792.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Capobianco, S., Chennamaneni, V., Mittal, M., Zhang, N., & Zhang, C. (2010). Endothelial progenitor cells as factors in neovascularization and endothelial repair. World Journal of Cardiology, 2(12), 411–420.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Yoder, M. C. (2013). Endothelial progenitor cell: a blood cell by many other names may serve similar functions. Journal of Molecular Medicine (Berlin, Germany), 91(3), 285–295.

    Article  Google Scholar 

  8. 8.

    Negro, R., Greco, E. L., & Greco, G. (2017). Active stromal cell-derived factor 1α and endothelial progenitor cells are equally increased by alogliptin in good and poor diabetes control. Clinical Medicine Insights: Endocrinology and Diabetes, 10, 1179551417743980. https://doi.org/10.1177/1179551417743980.

  9. 9.

    Massa, M., Rosti, V., Ferrario, M., et al. (2005). Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood, 105(1), 199–206.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Werner, N., & Nickenig, G. (2006). Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arteriosclerosis, Thrombosis, and Vascular Biology, 26(2), 257–266.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Wojakowski, W., Tendera, M., Michalowska, A., et al. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110(20), 3213–3220.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Jernberg, T., Hasvold, P., Henriksson, M., Hjelm, H., Thuresson, M., & Janzon, M. (2015). Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. European Heart Journal, 36(19), 1163–1170.

    Article  PubMed  Google Scholar 

  13. 13.

    Rigato, M., Avogaro, A., & Fadini, G. P. (2016). Levels of circulating progenitor cells, cardiovascular outcomes and death: a meta-analysis of prospective observational studies. Circulation Research, 118(12), 1930–1939.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Cuadrado-Godia, E., Regueiro, A., Nunez, J., et al. (2015). Endothelial progenitor cells predict cardiovascular events after atherothrombotic stroke and acute myocardial infarction. A PROCELL substudy. PloS One, 10(9), e0132415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Regueiro, A., Cuadrado-Godia, E., Bueno-Beti, C., et al. (2015). Mobilization of endothelial progenitor cells in acute cardiovascular events in the PROCELL study: time-course after acute myocardial infarction and stroke. Journal of Molecular and Cellular Cardiology, 80, 146–155.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Jimenez-Navarro, M. F., Caballero-Borrego, J., Rodriguez-Losada, N., et al. (2011). Influence of preinfarction angina on the release kinetics of endothelial progenitor cells and cytokines during the week after infarction. European Journal of Clinical Investigation, 41(11), 1220–1226.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Antonio, N., Fernandes, R., Soares, A., et al. (2014). Reduced levels of circulating endothelial progenitor cells in acute myocardial infarction patients with diabetes or pre-diabetes: accompanying the glycemic continuum. Cardiovascular Diabetology, 13, 101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Numaguchi, Y., Sone, T., Okumura, K., et al. (2006). The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation, 114(1 Suppl), I114–I119.

    PubMed  Google Scholar 

  19. 19.

    Porto, I., De Maria, G. L., Leone, A. M., et al. (2013). Endothelial progenitor cells, microvascular obstruction, and left ventricular remodeling in patients with ST elevation myocardial infarction undergoing primary percutaneous coronary intervention. American Journal of Cardiology, 112(6), 782–791.

    Article  PubMed  Google Scholar 

  20. 20.

    Porto, I., Leone, A. M., De Maria, G. L., et al. (2011). Are endothelial progenitor cells mobilized by myocardial ischemia or myocardial necrosis? A cardiac magnetic resonance study. Atherosclerosis, 216(2), 355–358.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Schmidt-Lucke, C., Fichtlscherer, S., Aicher, A., et al. (2010). Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PloS One, 5(11), e13790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Povsic, T. J., Najjar, S. S., Prather, K., et al. (2013). EPC mobilization after erythropoietin treatment in acute ST-elevation myocardial infarction: the REVEAL EPC substudy. Journal of Thrombosis and Thrombolysis, 36(4), 375–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Werner, N., Kosiol, S., Schiegl, T., et al. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. New England Journal of Medicine, 353(10), 999–1007.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Werner, N., Wassmann, S., Ahlers, P., et al. (2007). Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Research in Cardiology, 102(6), 565–571.

    Article  PubMed  Google Scholar 

  25. 25.

    Porto, I., Di Vito, L., De Maria, G. L., et al. (2009). Comparison of the effects of ramipril versus telmisartan on high-sensitivity C-reactive protein and endothelial progenitor cells after acute coronary syndrome. American Journal of Cardiology, 103(11), 1500–1505.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Mozid, A. M., Jones, D., Arnous, S., et al. (2013). The effects of age, disease state, and granulocyte colony-stimulating factor on progenitor cell count and function in patients undergoing cell therapy for cardiac disease. Stem Cells and Development, 22(2), 216–223.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Lev, E. I., Kleiman, N. S., Birnbaum, Y., Harris, D., Korbling, M., & Estrov, Z. (2005). Circulating endothelial progenitor cells and coronary collaterals in patients with non-ST segment elevation myocardial infarction. Journal of Vascular Research, 42(5), 408–414.

    Article  PubMed  Google Scholar 

  28. 28.

    Kuliczkowski, W., Derzhko, R., Prajs, I., Podolak-Dawidziak, M., & Serebruany, V. L. (2012). Endothelial progenitor cells and left ventricle function in patients with acute myocardial infarction: potential therapeutic considertions. American Journal of Therapeutics, 19(1), 44–50.

    Article  PubMed  Google Scholar 

  29. 29.

    Nolan, D. J., Ciarrocchi, A., Mellick, A. S., et al. (2007). Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes & Development, 21(12), 1546–1558.

    Article  CAS  Google Scholar 

  30. 30.

    Gao, D., & Mittal, V. (2009). The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends in Molecular Medicine, 15(8), 333–343.

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Kim, J. Y., Song, S. H., Kim, K. L., et al. (2010). Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplantation, 19(12), 1635–1644.

    Article  PubMed  Google Scholar 

  32. 32.

    Um, J., Jung, N., Chin, S., Cho, Y., Choi, S., & Park, K. S. (2016). Substance P enhances EPC mobilization for accelerated wound healing. Wound Repair and Regeneration, 24(2), 402–410.

    Article  PubMed  Google Scholar 

  33. 33.

    Shintani, S., Murohara, T., Ikeda, H., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103(23), 2776–2779.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Murayama, T., Tepper, O. M., Silver, M., et al. (2002). Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Experimental Hematology, 30(8), 967–972.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Risau, W., & Flamme, I. (1995). Vasculogenesis. Annual Review of Cell and Developmental Biology, 11, 73–91.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C., & Keller, G. (1998). A common precursor for hematopoietic and endothelial cells. Development, 125(4), 725–732.

    CAS  PubMed  Google Scholar 

  37. 37.

    Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6(4), 389–395.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Risau, W. (1997). Mechanisms of angiogenesis. Nature, 386(6626), 671–674.

    Article  CAS  Google Scholar 

  39. 39.

    Ribatti, D., Vacca, A., Nico, B., Roncali, L., & Dammacco, F. (2001). Postnatal vasculogenesis. Mechanisms of Development, 100(2), 157–163.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Zengin, E., Chalajour, F., Gehling, U. M., et al. (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8), 1543–1551.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Gunsilius, E., Duba, H. C., Petzer, A. L., et al. (2000). Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet, 355(9216), 1688–1691.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Rosenzweig, A. (2003). Endothelial progenitor cells. New England Journal of Medicine, 348(7), 581–582.

    Article  PubMed  Google Scholar 

  43. 43.

    Imanishi, T., Tsujioka, H., & Akasaka, T. (2008). Endothelial progenitor cells dysfunction and senescence: contribution to oxidative stress. Current Cardiology Reviews, 4(4), 275–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Heissig, B., Hattori, K., Dias, S., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Dar, A., Kollet, O., & Lapidot, T. (2006). Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Experimental Hematology, 34(8), 967–975.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Briasoulis, A., Tousoulis, D., Antoniades, C., Papageorgiou, N., & Stefanadis, C. (2011). The role of endothelial progenitor cells in vascular repair after arterial injury and atherosclerotic plaque development. Cardiovascular Therapeutics, 29(2), 125–139.

    Article  PubMed  Google Scholar 

  47. 47.

    Lapidot, T., & Petit, I. (2002). Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental Hematology, 30(9), 973–981.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Takahashi, T., Kalka, C., Masuda, H., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5(4), 434–438.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Balaji, S., King, A., Crombleholme, T. M., & Keswani, S. G. (2013). The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Advances in Wound Care (New Rochelle), 2(6), 283–295.

    Article  Google Scholar 

  50. 50.

    De Falco, E., Porcelli, D., Torella, A. R., et al. (2004). SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood, 104(12), 3472–3482.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Asahara, T., Takahashi, T., Masuda, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18(14), 3964–3972.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Krock, B. L., Skuli, N., & Simon, M. C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes & Cancer, 2(12), 1117–1133.

    Article  CAS  Google Scholar 

  54. 54.

    Aicher, A., Zeiher, A. M., & Dimmeler, S. (2005). Mobilizing endothelial progenitor cells. Hypertension, 45(3), 321–325.

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Huang, P. H., Chen, Y. H., Wang, C. H., et al. (2009). Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(8), 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Petit, I., Jin, D., & Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends in Immunology, 28(7), 299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Fortunato, O., Spinetti, G., Specchia, C., Cangiano, E., Valgimigli, M., & Madeddu, P. (2013). Migratory activity of circulating progenitor cells and serum SDF-1alpha predict adverse events in patients with myocardial infarction. Cardiovascular Research, 100(2), 192–200.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Tilling, L., Chowienczyk, P., & Clapp, B. (2009). Progenitors in motion: mechanisms of mobilization of endothelial progenitor cells. British Journal of Clinical Pharmacology, 68(4), 484–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Gill, M., Dias, S., Hattori, K., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88(2), 167–174.

    Article  CAS  PubMed  Google Scholar 

  60. 60.

    Xu, J., Liu, X., Jiang, Y., et al. (2008). MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. Journal of Cellular and Molecular Medicine, 12(6a), 2395–2406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Cheng, Y., Jiang, S., Hu, R., & Lv, L. (2013). Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: activation of VEGF- PI3K/Akte-NOS pathway. Annals of Clinical and Laboratory Science, 43(4), 395–401.

    CAS  PubMed  Google Scholar 

  62. 62.

    Wu, Y., Potempa, L. A., El Kebir, D., & Filep, J. G. (2015). C-reactive protein and inflammation: conformational changes affect function. Biological Chemistry, 396(11), 1181–1197.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Peplow, P. V. (2014). Influence of growth factors and cytokines on angiogenic function of endothelial progenitor cells: a review of in vitro human studies. Growth Factors, 32(3–4), 83–116.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Du, F., Zhou, J., Gong, R., et al. (2012). Endothelial progenitor cells in atherosclerosis. Frontiers in Bioscience (Landmark Edition), 17, 2327–2349.

    Article  CAS  Google Scholar 

  65. 65.

    Gross, A., Schoendube, J., Zimmermann, S., Steeb, M., Zengerle, R., & Koltay, P. (2015). Technologies for single-cell isolation. International Journal of Molecular Sciences, 16(8), 16897–16919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Fadini, G. P., Baesso, I., Albiero, M., Sartore, S., Agostini, C., & Avogaro, A. (2008). Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis, 197(2), 496–503.

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Spano, M., & Evenson, D. P. (1993). Flow cytometric analysis for reproductive biology. Biologie Cellulaire, 78(1–2), 53–62.

    Article  CAS  Google Scholar 

  68. 68.

    Ibrahim, S. F., & van den Engh, G. (2007). Flow cytometry and cell sorting. Advances in Biochemical Engineering/Biotechnology, 106, 19–39.

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Bellik, L., Ledda, F., & Parenti, A. (2005). Morphological and phenotypical characterization of human endothelial progenitor cells in an early stage of differentiation. FEBS Letters, 579(12), 2731–2736.

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Khan, S. S., Solomon, M. A., & McCoy Jr., J. P. (2005). Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry, Part B: Clinical Cytometry, 64(1), 1–8.

    Article  Google Scholar 

  71. 71.

    Yoder, M. C. (2012). Human endothelial progenitor cells. Cold Spring Harbor Perspectives in Medicine, 2(7), a006692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Sirker, A. A., Astroulakis, Z. M., & Hill, J. M. (2009). Vascular progenitor cells and translational research: the role of endothelial and smooth muscle progenitor cells in endogenous arterial remodelling in the adult. Clinical Science (London, England: 1979), 116(4), 283–299.

    Article  CAS  Google Scholar 

  73. 73.

    Fadini, G. P., Losordo, D., & Dimmeler, S. (2012). Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circulation Research, 110(4), 624–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lin, L. Y., Huang, C. C., Chen, J. S., et al. (2014). Effects of pitavastatin versus atorvastatin on the peripheral endothelial progenitor cells and vascular endothelial growth factor in high-risk patients: a pilot prospective, double-blind, randomized study. Cardiovascular Diabetology, 13, 111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Yin, A. H., Miraglia, S., Zanjani, E. D., et al. (1997). AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90(12), 5002–5012.

    CAS  PubMed  Google Scholar 

  76. 76.

    Krause, D. S., Fackler, M. J., Civin, C. I., & May, W. S. (1996). CD34: structure, biology, and clinical utility. Blood, 87(1), 1–13.

    CAS  PubMed  Google Scholar 

  77. 77.

    Andrews, R. G., Singer, J. W., & Bernstein, I. D. (1986). Monoclonal antibody 12–8 recognizes a 115-kd molecule present on both unipotent and multipotent hematopoietic colony-forming cells and their precursors. Blood, 67(3), 842–845.

    CAS  PubMed  Google Scholar 

  78. 78.

    Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S., & Hopkinson, A. (2014). Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells, 32(6), 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lin, G., Finger, E., & Gutierrez-Ramos, J. C. (1995). Expression of CD34 in endothelial cells, hematopoietic progenitors and nervous cells in fetal and adult mouse tissues. European Journal of Immunology, 25(6), 1508–1516.

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Siemerink, M. J., Klaassen, I., Vogels, I. M., Griffioen, A. W., Van Noorden, C. J., & Schlingemann, R. O. (2012). CD34 marks angiogenic tip cells in human vascular endothelial cell cultures. Angiogenesis, 15(1), 151–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Stauffer, B. L., Maceneaney, O. J., Kushner, E. J., et al. (2008). Gender and endothelial progenitor cell number in middle-aged adults. Artery Research, 2(4), 156–160.

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Fadini, G. P., Coracina, A., Baesso, I., et al. (2006). Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke, 37(9), 2277–2282.

    Article  CAS  PubMed  Google Scholar 

  83. 83.

    Peichev, M., Naiyer, A. J., Pereira, D., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.

    CAS  PubMed  Google Scholar 

  84. 84.

    Friedrich, E. B., Walenta, K., Scharlau, J., Nickenig, G., & Werner, N. (2006). CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circulation Research, 98(3), e20–e25.

    Article  CAS  PubMed  Google Scholar 

  85. 85.

    Powell, T. M., Paul, J. D., Hill, J. M., et al. (2005). Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(2), 296–301.

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Schatteman, G. C., & Awad, O. (2004). Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anatomical record part a: Discoveries in molecular, Cellular, and Evolutionary Biology, 276(1), 13–21.

    Article  Google Scholar 

  87. 87.

    Chao, H., & Hirschi, K. K. (2010). Hemato-vascular origins of endothelial progenitor cells? Microvascular Research, 79(3), 169–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Estes, M. L., Mund, J. A., Mead, L. E., et al. (2010). Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry. Part A : the Journal of the International Society for Analytical Cytology, 77(9), 831–839.

    Article  Google Scholar 

  89. 89.

    Kocher, A. A., Schuster, M. D., Szabolcs, M. J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436.

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Li, T. S., Hamano, K., Nishida, M., et al. (2003). CD117+ stem cells play a key role in therapeutic angiogenesis induced by bone marrow cell implantation. American Journal of Physiology: Heart and Circulatory Physiology, 285(3), H931–H937.

    CAS  PubMed  Google Scholar 

  91. 91.

    Li, T. S., Hayashi, M., Liu, Z. L., et al. (2004). Low angiogenic potency induced by the implantation of ex vivo expanded CD117(+) stem cells. American Journal of Physiology: Heart and Circulatory Physiology, 286(4), H1236–H1241.

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Duff, S. E., Li, C., Garland, J. M., & Kumar, S. (2003). CD105 is important for angiogenesis: Evidence and potential applications. FASEB Journal, 17(9), 984–992.

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Yu, D. C., Chen, J., & Ding, Y. T. (2010). Hypoxic and highly angiogenic non-tumor tissues surrounding hepatocellular carcinoma: the ‘niche’ of endothelial progenitor cells. International Journal of Molecular Sciences, 11(8), 2901–2909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Li, C., Hampson, I. N., Hampson, L., Kumar, P., Bernabeu, C., & Kumar, S. (2000). CD105 antagonizes the inhibitory signaling of transforming growth factor beta1 on human vascular endothelial cells. FASEB Journal, 14(1), 55–64.

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Hager, G., Holnthoner, W., Wolbank, S., et al. (2013). Three specific antigens to isolate endothelial progenitor cells from human liposuction material. Cytotherapy, 15(11), 1426–1435.

    Article  CAS  PubMed  Google Scholar 

  96. 96.

    Hill, J. M., Zalos, G., Halcox, J. P., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348(7), 593–600.

    Article  PubMed  Google Scholar 

  97. 97.

    Jialal, I., Devaraj, S., Singh, U., & Huet, B. A. (2010). Decreased number and impaired functionality of endothelial progenitor cells in subjects with metabolic syndrome: implications for increased cardiovascular risk. Atherosclerosis, 211(1), 297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Wu, Y. T., Li, J. X., Liu, S., et al. (2012). A novel and feasible way to cultivate and purify endothelial progenitor cells from bone marrow of children with congenital heart diseases. Chinese Medical Journal (Engl), 125(11), 1903–1907.

    Google Scholar 

  99. 99.

    Hur, J., Yoon, C. H., Kim, H. S., et al. (2004). Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(2), 288–293.

    Article  CAS  PubMed  Google Scholar 

  100. 100.

    Mauge, L., Sabatier, F., Boutouyrie, P., et al. (2014). Forearm ischemia decreases endothelial colony-forming cell angiogenic potential. Cytotherapy, 16(2), 213–224.

    Article  CAS  PubMed  Google Scholar 

  101. 101.

    Wang, C. H., Huang, P. H., Chen, J. W., et al. (2013). Clinical application of endothelial progenitor cell: are we ready? Acta Cardiologica Sinica, 29(6), 479–487.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Yoder, M. C., Mead, L. E., Prater, D., et al. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood, 109(5), 1801–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Ingram, D. A., Mead, L. E., Tanaka, H., et al. (2004). Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 104(9), 2752–2760.

    Article  CAS  PubMed  Google Scholar 

  104. 104.

    Lekakis, J., Abraham, P., Balbarini, A., et al. (2011). Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on peripheral circulation. European Journal of Cardiovascular Prevention and Rehabilitation, 18(6), 775–789.

    Article  PubMed  Google Scholar 

  105. 105.

    Huizer, K., Mustafa, D. A. M., Spelt, J. C., Kros, J. M., & Sacchetti, A. (2017). Improving the characterization of endothelial progenitor cell subsets by an optimized FACS protocol. PloS One, 12(9), e0184895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Brixius, K., Funcke, F., Graf, C., & Bloch, W. (2006). Endothelial progenitor cells: a new target for the prevention of cardiovascular diseases. European Journal of Cardiovascular Prevention and Rehabilitation, 13(5), 705–710.

    Article  PubMed  Google Scholar 

  107. 107.

    Shantsila, E., Watson, T., Tse, H. F., & Lip, G. Y. (2007). Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Annals of Medicine, 39(6), 474–479.

    Article  CAS  PubMed  Google Scholar 

  108. 108.

    Chu, K., Jung, K. H., Lee, S. T., et al. (2008). Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke. Stroke, 39(5), 1441–1447.

    Article  CAS  PubMed  Google Scholar 

  109. 109.

    Torsney, E., Mandal, K., Halliday, A., Jahangiri, M., & Xu, Q. (2007). Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 191(2), 259–264.

    Article  CAS  PubMed  Google Scholar 

  110. 110.

    Ciulla, M. M., Giorgetti, A., Silvestris, I., et al. (2006). Endothelial colony forming capacity is related to C-reactive protein levels in healthy subjects. Current Neurovascular Research, 3(2), 99–106.

    Article  CAS  PubMed  Google Scholar 

  111. 111.

    Wang, X., & Connolly, T. M. (2010). Biomarkers of vulnerable atheromatous plaques: translational medicine perspectives. Advances in Clinical Chemistry, 50, 1–22.

    Article  CAS  PubMed  Google Scholar 

  112. 112.

    Chironi, G., Walch, L., Pernollet, M. G., et al. (2007). Decreased number of circulating CD34+KDR+ cells in asymptomatic subjects with preclinical atherosclerosis. Atherosclerosis, 191(1), 115–120.

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Hughes, A. D., Coady, E., Raynor, S., et al. (2007). Reduced endothelial progenitor cells in European and South Asian men with atherosclerosis. European Journal of Clinical Investigation, 37(1), 35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317–325.

    Article  CAS  Google Scholar 

  115. 115.

    Anderson, J. L., & Morrow, D. A. (2017). Acute myocardial infarction. New England Journal of Medicine, 376(21), 2053–2064.

    Article  CAS  PubMed  Google Scholar 

  116. 116.

    Kotecha, T., & Rakhit, R. D. (2016). Acute coronary syndromes. Clinical Medicine (London, England), 16(Suppl 6), s43–s48.

    Article  Google Scholar 

  117. 117.

    Paxinos, G., & Katritsis, D. G. (2012). Current therapy of non-ST-elevation acute coronary syndromes. Hellenic Journal of Cardiology Hellenike Kardiologike Epitheorese, 53(1), 63–71.

    PubMed  Google Scholar 

  118. 118.

    Seiler, C. (2010). The human coronary collateral circulation. European Journal of Clinical Investigation, 40(5), 465–476.

    Article  PubMed  Google Scholar 

  119. 119.

    Habib, G. B., Heibig, J., Forman, S. A., et al. (1991). Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation, 83(3), 739–746.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

It is our privilege to express our sincere acknowledgments to all who helped us to successfully complete this manuscript. The authors received no specific funding for this work.

Contributions

The first draft was written by Leal V. Silva S designed the work. All authors critically revised the manuscript. All gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vânia Leal.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leal, V., Ribeiro, C.F., Oliveiros, B. et al. Intrinsic Vascular Repair by Endothelial Progenitor Cells in Acute Coronary Syndromes: an Update Overview. Stem Cell Rev and Rep 15, 35–47 (2019). https://doi.org/10.1007/s12015-018-9857-2

Download citation

Keywords

  • Endothelial progenitor cells
  • Myocardial infarction
  • Acute coronary syndromes
  • Cardiovascular risk
  • Flow cytometry