Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents

Abstract

Over 10 years, mesenchymal stem cells (MSCs) have been considered as valuable and suitable cells for cell-based therapy applications, particularly in clinical trials. In any case, they are as yet not utilized routinely in clinics. At first, it was believed that MSCs play their roles, especially in regenerative medicine due to their differentiation and cell replacement properties. Interestingly, it is well-known that MSCs mainly exert their therapeutic effects through their vast bioactive factors. These findings turned scientists’ consideration toward cell-free therapy concepts. From this point of view, MSCs can be considered as an arsenal of natural bioreactors in variety of therapeutic agents. MSCs inherently express various important therapeutic agents such as growth factors and cytokines that can be manufactured, handled and stored as a prepared-to-go biologic product. In this review, we provide a vision, highlight as well as discuss in order to introduce competitive natural robust bioreactor MSCs on the horizon.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Youssef A, Aboalola D, & Han VK. (2017). The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells International;2017.

  2. 2.

    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., & Perez-Fernandez, R. (2017). Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences, 18, 1852.

    PubMed Central  Article  Google Scholar 

  4. 4.

    Kim, H. O., Choi, S.-M., & Kim, H.-S. (2013). Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine, 10, 93–101.

    Article  CAS  Google Scholar 

  5. 5.

    Ding, D.-C., Shyu, W.-C., & Lin, S.-Z. (2011). Mesenchymal stem cells. Cell Transplantation, 20, 5–14.

    PubMed  Article  Google Scholar 

  6. 6.

    Wakao, S., Kuroda, Y., Ogura, F., Shigemoto, T., & Dezawa, M. (2012). Regenerative effects of mesenchymal stem cells: contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cell, 1, 1045–1060.

    Article  CAS  Google Scholar 

  7. 7.

    Koh, M. B., & Suck, G. (2012). Cell therapy: promise fulfilled? Biologicals, 40, 214–217.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Phinney, D. G., & Pittenger, M. F. (2017). Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 35, 851–858.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Schoeberlein, A., Mueller, M., Reinhart, U., Sager, R., Messerli, M., & Surbek, D. V. (2011). Homing of placenta-derived mesenchymal stem cells after perinatal intracerebral transplantation in a rat model. American Journal of Obstetrics & Gynecology, 205(277), e1–e6.

    Google Scholar 

  10. 10.

    Mueller, M., Wolfs, T. G., Schoeberlein, A., Gavilanes, A. W., Surbek, D., & Kramer, B. W. (2016). Mesenchymal stem/stromal cells—a key mediator for regeneration after perinatal morbidity? Molecular and Cellular Pediatrics, 3, 6.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Lee, K. A., Shim, W., Paik, M. J., et al. (2009). Analysis of changes in the viability and gene expression profiles of human mesenchymal stromal cells over time. Cytotherapy, 11, 688–697.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Han, S.-M., Han, S.-H., Coh, Y.-R., et al. (2014). Enhanced proliferation and differentiation of Oct4-and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Experimental & Molecular Medicine, 46, e101.

    Article  CAS  Google Scholar 

  13. 13.

    Hagberg, H., Mallard, C., Ferriero, D. M., et al. (2015). The role of inflammation in perinatal brain injury. Nature Reviews Neurology, 11, 192.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Francois, S., Mouiseddine, M., Allenet-Lepage, B., et al. (2013). Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed Research International, 2013.

  15. 15.

    Fossett, E., & Khan, W. (2012). Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells International, 2012.

  16. 16.

    Amiri, F., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2015). In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments. Cell Stress and Chaperones, 20, 237–251.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Halabian, R., Tehrani, H. A., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2013). Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell stress and chaperones, 18, 785–800.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Kiani, A. A., Kazemi, A., Halabian, R., Mohammadipour, M., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2013). HIF-1α confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Archives of Medical Research, 44, 185–193.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., & Papamichail, M. (2006). Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells, 24, 462–471.

    PubMed  Article  Google Scholar 

  20. 20.

    Duggal, S., & Brinchmann, J. E. (2011). Importance of serum source for the in vitro replicative senescence of human bone marrow derived mesenchymal stem cells. Journal of Cellular Physiology, 226, 2908–2915.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Kornicka K, Marycz K, Tomaszewski KA, Marędziak M, Śmieszek A. (2015). The effect of age on osteogenic and adipogenic differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress factors in the course of the differentiation process. Oxidative Medicine and Cellular Longevity ;2015.

  22. 22.

    Bertolo, A., Capossela, S., Fränkl, G., Baur, M., Pötzel, T., & Stoyanov, J. (2017). Oxidative status predicts quality in human mesenchymal stem cells. Stem Cell Research & Therapy, 8, 3.

    Article  CAS  Google Scholar 

  23. 23.

    Maredziak, M., Marycz, K., Tomaszewski, K. A., Kornicka, K., & Henry, B. M. (2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International, 2016, 2152435.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Sell, S. (2010). On the stem cell origin of cancer. The American Journal of Pathology, 176, 2584–2594.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Kucia, M., Reca, R., Miekus, K., et al. (2005). Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells, 23, 879–894.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Marycz K, Kornicka K, Grzesiak J, Śmieszek A, Szłapka J. (2016). Macroautophagy and selective mitophagy ameliorate chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: New findings in the field of progenitor cells differentiation. Oxidative Medicine and Cellular Longevity ;2016.

  27. 27.

    Yang, D., Wang, W., Li, L., et al. (2013). The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS One, 8, e59020.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Prockop, D. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clinical Pharmacology & Therapeutics, 82, 241–243.

    Article  CAS  Google Scholar 

  29. 29.

    Bai, L., Shao, H., Wang, H., et al. (2017). Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Scientific Reports, 7, 4323.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. 30.

    Bruno, S., Grange, C., Deregibus, M. C., et al. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology, 20, 1053–1067.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Bruno, S., Grange, C., Collino, F., et al. (2012). Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One, 7, e33115.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. 32.

    Aliotta, J. M., Pereira, M., Wen, S., et al. (2016). Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 110, 319–330.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Lee C, Mitsialis SA, Aslam M, et al. (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation:Circulationaha. 112.114173.

  34. 34.

    Zhang, B., Wang, M., Gong, A., et al. (2015). HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells, 33, 2158–2168.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Zhang, B., Wu, X., Zhang, X., et al. (2015). Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Translational Medicine, 4, 513–522.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Bermudez, M. A., Sendon-Lago, J., Eiro, N., et al. (2015). Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Investigative Ophthalmology & Visual Science, 56, 983–992.

    Article  CAS  Google Scholar 

  37. 37.

    Bhang, S. H., Lee, S., Shin, J.-Y., Lee, T.-J., Jang, H.-K., & Kim, B.-S. (2014). Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Molecular Therapy, 22, 862–872.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Zagoura DS, Roubelakis MG, Bitsika V, et al. (2011). Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut:gutjnl-2011-300908.

  39. 39.

    Park, B.-S., Kim, W.-S., Choi, J.-S., et al. (2010). Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomedical Research, 31, 27–34.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Mirabella, T., Cilli, M., Carlone, S., Cancedda, R., & Gentili, C. (2011). Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials, 32, 3689–3699.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Lee, M. J., Kim, J., Lee, K. I., Shin, J. M., Chae, J. I., & Chung, H. M. (2011). Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy, 13, 165–178.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Kim, J., Lee, J. H., Yeo, S. M., Chung, H. M., & Chae, J.-I. (2014). Stem cell recruitment factors secreted from cord blood-derived stem cells that are not secreted from mature endothelial cells enhance wound healing. In Vitro Cellular & Developmental Biology-Animal, 50, 146–154.

    Article  CAS  Google Scholar 

  43. 43.

    Ray, P., Devaux, Y., Stolz, D. B., et al. (2003). Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. Proceedings of the National Academy of Sciences, 100, 6098–6103.

    Article  CAS  Google Scholar 

  44. 44.

    Turner J-E, Morrison PJ, Wilhelm C, et al. (2013). IL-9–mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. Journal of Experimental Medicine :jem. 20130071.

  45. 45.

    Bakondi, B., Shimada, I. S., Perry, A., et al. (2009). CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke. Molecular Therapy, 17, 1938–1947.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V., & Banerjee, U. (2007). The hematopoietic stem cell and its niche: a comparative view. Genes & Development, 21, 3044–3060.

    Article  CAS  Google Scholar 

  47. 47.

    Beer L, Mildner M, & Ankersmit HJ. (2017). Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Annals of Translational Medicine ;5.

  48. 48.

    Pawitan JA. (2014). Prospect of stem cell conditioned medium in regenerative medicine. BioMed Research International ;2014.

  49. 49.

    Cantinieaux, D., Quertainmont, R., Blacher, S., et al. (2013). Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One, 8, e69515.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Bermudez, M. A., Sendon-Lago, J., Seoane, S., et al. (2016). Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Experimental Eye Research, 149, 84–92.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Chang, C.-P., Chio, C.-C., Cheong, C.-U., Chao, C.-M., Cheng, B.-C., & Lin, M.-T. (2013). Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clinical Science, 124, 165–176.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Ionescu, L., Byrne, R. N., van Haaften, T., et al. (2012). Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology-Lung Cellular and Molecular Physiology, 303, L967–LL77.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Katagiri, W., Watanabe, J., Toyama, N., Osugi, M., Sakaguchi, K., & Hibi, H. (2017). Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation. Implant Dentistry, 26, 607–612.

    PubMed  Article  Google Scholar 

  54. 54.

    Legaki, E., Roubelakis, M., Theodoropoulos, G., et al. (2016). Therapeutic potential of secreted molecules derived from human amniotic fluid mesenchymal stem/stroma cells in a mice model of colitis. Stem Cell Reviews and Reports, 12, 604–612.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Sevivas, N., Teixeira, F. G., Portugal, R., et al. (2017). Mesenchymal stem cell secretome: a potential tool for the prevention of muscle degenerative changes associated with chronic rotator cuff tears. The American Journal of Sports Medicine, 45, 179–188.

    Article  PubMed  Google Scholar 

  56. 56.

    Timmers, L., Lim, S. K., Arslan, F., et al. (2008). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research, 1, 129–137.

    Article  CAS  Google Scholar 

  57. 57.

    Zhou B-R, Xu Y, Guo S-L, et al. (2013). The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BioMed Research International ;2013.

  58. 58.

    Eiró, N., Sendon-Lago, J., Seoane, S., et al. (2014). Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget, 5, 10692.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Ozbey, G., Gorczynski, R., & Erin, N. (2014). Stability of cytokines in supernatants of stimulated mouse immune cells. European Cytokine Network, 25, 30–34.

    Google Scholar 

  60. 60.

    Lai, R. C., Arslan, F., Lee, M. M., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4, 214–222.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Yu, B., Kim, H. W., Gong, M., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360.

    PubMed  Article  Google Scholar 

  62. 62.

    Xin, H., Li, Y., Cui, Y., Yang, J. J., Zhang, Z. G., & Chopp, M. (2013). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. Journal of Cerebral Blood Flow & Metabolism, 33, 1711–1715.

    Article  CAS  Google Scholar 

  63. 63.

    Ophelders, D. R., Wolfs, T. G., Jellema, R. K., et al. (2016). Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia. Stem Cells Translational Medicine, 5, 754–763.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64.

    Hu, G.-w., Li, Q., Niu, X., et al. (2015). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Research & Therapy, 6, 10.

    Article  CAS  Google Scholar 

  65. 65.

    Li, T., Yan, Y., Wang, B., et al. (2012). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22, 845–854.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Tan, C. Y., Lai, R. C., Wong, W., Dan, Y. Y., Lim, S.-K., & Ho, H. K. (2014). Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Research & Therapy, 5, 76.

    Article  CAS  Google Scholar 

  67. 67.

    Rager, T. M., Olson, J. K., Zhou, Y., Wang, Y., & Besner, G. E. (2016). Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. Journal of Pediatric Surgery, 51, 942–947.

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Monsel, A., Zhu, Y.-g., Gennai, S., et al. (2015). Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. American Journal of Respiratory and Critical Care Medicine, 192, 324–336.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Gennai, S., Monsel, A., Hao, Q., Park, J., Matthay, M., & Lee, J. (2015). Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. American Journal of Transplantation, 15, 2404–2412.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Choi, M., Ban, T., & Rhim, T. (2014). Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 37, 133.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. 71.

    Zhang, J., Guan, J., Niu, X., et al. (2015). Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of Translational Medicine, 13, 49.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Fang, S., Xu, C., Zhang, Y., et al. (2016). Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Translational Medicine, 5, 1425–1439.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Nakamura, Y., Miyaki, S., Ishitobi, H., et al. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 589, 1257–1265.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Barry, F., & Murphy, M. (2013). Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology, 9, 584.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Aghajani Nargesi, A., O Lerman, L., & Eirin, A. (2017). Mesenchymal stem cell-derived extracellular vesicles for renal repair. Current Gene Therapy, 17, 29–42.

    Google Scholar 

  76. 76.

    Roushandeh, A. M., Bahadori, M., & Roudkenar, M. H. (2017). Mesenchymal Stem Cell-based Therapy as a New Horizon for Kidney Injuries. Archives of Medical Research, 48, 133–146.

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Halabian, R., Roudkenar, M. H., Jahanian-Najafabadi, A., Hosseini, K. M., & Tehrani, H. A. (2015). Co-culture of bone marrow-derived mesenchymal stem cells overexpressing lipocalin 2 with HK-2 and HEK293 cells protects the kidney cells against cisplatin-induced injury. Cell Biology International, 39, 152–163.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Kraitchman, D. L., Tatsumi, M., Gilson, W. D., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112, 1451–1461.

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Bittira, B., Shum-Tim, D., Al-Khaldi, A., & Chiu, R. C. (2003). Mobilization and homing of bone marrow stromal cells in myocardial infarction. European Journal of Cardio-Thoracic Surgery, 24, 393–398.

    PubMed  Article  Google Scholar 

  80. 80.

    Shake, J. G., Gruber, P. J., Baumgartner, W. A., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. The Annals of Thoracic Surgery, 73, 1919–1926.

    PubMed  Article  Google Scholar 

  81. 81.

    Fontaine, M. J., Shih, H., Schäfer, R., & Pittenger, M. F. (2016). Unraveling the mesenchymal stromal cells' paracrine immunomodulatory effects. Transfusion Medicine Reviews, 30, 37–43.

    PubMed  Article  Google Scholar 

  82. 82.

    Aslam, M., Baveja, R., Liang, O. D., et al. (2009). Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. American Journal of Respiratory and Critical Care Medicine, 180, 1122–1130.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Ho, J. C., Lai, W. H., Li, M. F., et al. (2012). Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell-derived endothelial cells. Diabetes/Metabolism Research and Reviews, 28, 462–473.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Di Santo, S., Yang, Z., von Ballmoos, M. W., et al. (2009). Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One, 4, e5643.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Inukai, T., Katagiri, W., Yoshimi, R., et al. (2013). Novel application of stem cell-derived factors for periodontal regeneration. Biochemical and Biophysical Research Communications, 430, 763–768.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Sadat, S., Gehmert, S., Song, Y.-H., et al. (2007). The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochemical and Biophysical Research Communications, 363, 674–679.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    See, F., Seki, T., Psaltis, P. J., et al. (2011). Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. Journal of Cellular and Molecular Medicine, 15, 2117–2129.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Cho, Y. J., Song, H. S., Bhang, S., et al. (2012). Therapeutic effects of human adipose stem cell-conditioned medium on stroke. Journal of Neuroscience Research, 90, 1794–1802.

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Sze, S. K., de Kleijn, D. P., Lai, R. C., et al. (2007). Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular & Cellular Proteomics, 6, 1680–1689.

    Article  CAS  Google Scholar 

  90. 90.

    Xiong, L.-L., Liu, F., Lu, B.-T., et al. (2017). Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews. Frontiers in Cellular Neuroscience, 11, 172.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3, e1886.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Gao, F., Chiu, S., Motan, D., et al. (2017). Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death & Disease, 7, e2062.

    Article  Google Scholar 

  93. 93.

    Ruvolo P, Qiu Y, Ruvolo V, et al. (2015). Role of Mesenchymal Stem Cell Galectin 3 in the AML Tumor Microenvironment. Am Soc Hematology.

  94. 94.

    Ling, W., Zhang, J., & Yuan, Z., et al. (2014). Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Research.

  95. 95.

    Lourenco, S., Teixeira, V. H., Kalber, T., Jose, R. J., Floto, R. A., & Janes, S. M. (2015). Macrophage migration inhibitory factor–CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. The Journal of Immunology, 194, 3463–3474.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Kim, H. S., Yun, J. W., Shin, T. H., et al. (2015). Human umbilical cord blood mesenchymal stem cell-derived PGE2 and TGF-β1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells, 33, 1254–1266.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Qi, Y., Jiang, D., Sindrilaru, A., et al. (2014). TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. Journal of Investigative Dermatology, 134, 526–537.

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Krasnodembskaya, A., Song, Y., Fang, X., et al. (2010). Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells, 28, 2229–2238.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Németh, K., Leelahavanichkul, A., Yuen, P. S., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E 2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15, 42.

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Choi, H., Lee, R. H., Bazhanov, N., Oh, J. Y., & Prockop, D. J. (2011). Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood, 118, 330–338.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Keating, A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell, 10, 709–716.

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Fierabracci, A., Del Fattore, A., Muraca, M., Vittorio Delfino, D., & Muraca, M. (2016). The use of mesenchymal stem cells for the treatment of autoimmunity: from animals models to human disease. Current Drug Targets, 17, 229–238.

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R., & Fibbe, W. E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. The Journal of Immunology, 177, 2080–2087.

    PubMed  Article  CAS  Google Scholar 

  105. 105.

    English, K., Barry, F. P., & Mahon, B. P. (2008). Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunology Letters, 115, 50–58.

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113, 6576–6583.

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Li, Y.-P., Paczesny, S., Lauret, E., et al. (2008). Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. The Journal of Immunology, 180, 1598–1608.

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Zhang, B., Liu, R., Shi, D., et al. (2009). Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2–dependent regulatory dendritic cell population. Blood, 113, 46–57.

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Li, Q., Fang, Y., Li, X., et al. (2013). Mechanism of the plant cytochrome P450 for herbicide resistance: a modelling study. Journal of Enzyme Inhibition and Medicinal Chemistry, 28, 1182–1191.

    PubMed  Article  CAS  Google Scholar 

  110. 110.

    Liu, X., Qu, X., Chen, Y., et al. (2012). Mesenchymal stem/stromal cells induce the generation of novel IL-10–dependent regulatory dendritic cells by SOCS3 activation. The Journal of Immunology, 189, 1182–1192.

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Schu, S., Nosov, M., O'Flynn, L., et al. (2012). Immunogenicity of allogeneic mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 16, 2094–2103.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. 112.

    Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet, 363, 1439–1441.

    Article  Google Scholar 

  113. 113.

    English, K., French, A., & Wood, K. J. (2010). Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell, 7, 431–442.

    PubMed  Article  CAS  Google Scholar 

  114. 114.

    Prigozhina, T. B., Khitrin, S., Elkin, G., Eizik, O., Morecki, S., & Slavin, S. (2008). Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Experimental Hematology, 36, 1370–1376.

    PubMed  Article  CAS  Google Scholar 

  115. 115.

    Sudres, M., Norol, F., Trenado, A., et al. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. The Journal of Immunology, 176, 7761–7767.

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Baylink, D. J., Finkelman, R. D., & Mohan, S. (1993). Growth factors to stimulate bone formation. Journal of Bone and Mineral Research, 8.

  117. 117.

    Shim, K. S. (2015). Pubertal growth and epiphyseal fusion. Annals of Pediatric Endocrinology & metabolism, 20, 8–12.

    Article  Google Scholar 

  118. 118.

    Urist, M. R. (1965). Bone: formation by autoinduction. Science, 150, 893–899.

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Astori, G., Vignati, F., Bardelli, S., et al. (2007). " In vitro" and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. Journal of Translational Medicine, 5, 55.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  120. 120.

    Guo, J., Nguyen, A., Banyard, D. A., et al. (2016). Stromal vascular fraction: a regenerative reality? Part 2: Mechanisms of regenerative action. Journal of Plastic, Reconstructive & Aesthetic Surgery, 69, 180–188.

    Article  Google Scholar 

  121. 121.

    Schouten, H. (2006). Neutropenia management. Annals of Oncology, 17, x85–xx9.

    PubMed  Article  Google Scholar 

  122. 122.

    James, R., & Kinsey, S. (2006). The investigation and management of chronic neutropenia in children. Archives of Disease in Childhood, 91, 852–858.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123.

    Jubelirer, S. J. (2011). The benefit of the neutropenic diet: fact or fiction? The Oncologist, 16, 704–707.

    PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Steed, D. L. (1997). The role of growth factors in wound healing. Surgical Clinics of North America, 77, 575–586.

    PubMed  Article  CAS  Google Scholar 

  125. 125.

    Bermudez, M. A., Sendon-Lago, J., Eiro, N., et al. (2015). Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells effect of CM-hUCESCs on wound healing in dry eye. Investigative Ophthalmology & Visual Science, 56, 983–992.

    Article  CAS  Google Scholar 

  126. 126.

    Ranganath, S. H., Levy, O., Inamdar, M. S., & Karp, J. M. (2012). Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell, 10, 244–258.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  127. 127.

    Pankajakshan D, & Agrawal DK. (2014). Mesenchymal stem cell paracrine factors in vascular repair and regeneration. Journal of Biomedical Technology and Research 1.

  128. 128.

    Du, Z., Wei, C., Cheng, K., et al. (2013). Mesenchymal stem cell–conditioned medium reduces liver injury and enhances regeneration in reduced-size rat liver transplantation. Journal of Surgical Research, 183, 907–915.

    PubMed  Article  Google Scholar 

  129. 129.

    Forte, A., Finicelli, M., Mattia, M., et al. (2008). Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 217, 789–799.

    PubMed  Article  CAS  Google Scholar 

  130. 130.

    Forte, A., Rinaldi, B., Sodano, L., et al. (2012). Stem cell therapy for arterial restenosis: potential parameters contributing to the success of bone marrow-derived mesenchymal stromal cells. Cardiovascular Drugs and Therapy, 26, 9–21.

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Shoji, M., Oskowitz, A., Malone, C. D., Prockop, D. J., & Pochampally, R. (2011). Human mesenchymal stromal cells (MSCs) reduce neointimal hyperplasia in a mouse model of flow-restriction by transient suppression of anti-inflammatory cytokines. Journal of Atherosclerosis and Thrombosis, 18, 464–474.

    PubMed  Article  CAS  Google Scholar 

  132. 132.

    Takahashi, M., Suzuki, E., Oba, S., et al. (2009). Adipose tissue-derived stem cells inhibit neointimal formation in a paracrine fashion in rat femoral artery. American Journal of Physiology-Heart and Circulatory Physiology, 298, H415–HH23.

    PubMed  Article  CAS  Google Scholar 

  133. 133.

    Sato, K., Ozaki, K., Oh, I., et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, 228–234.

    PubMed  Article  CAS  Google Scholar 

  134. 134.

    Wang, C.-H., Cherng, W.-J., Yang, N.-I., et al. (2008). Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 54–60.

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Shoji, M., Koba, S., & Kobayashi, Y. (2014). Roles of bone-marrow-derived cells and inflammatory cytokines in neointimal hyperplasia after vascular injury. BioMed Research International 2014.

  136. 136.

    Marędziak, M., Marycz, K., Lewandowski, D., Siudzińska, A., & Śmieszek, A. (2015). Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)—a new approach in veterinary regenerative medicine. In Vitro Cellular & Developmental Biology-Animal, 51, 230–240.

    Article  CAS  Google Scholar 

  137. 137.

    Rajan, T. S., Giacoppo, S., Diomede, F., et al. (2016). The secretome of periodontal ligament stem cells from MS patients protects against EAE. Scientific Reports, 6, 38743.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  138. 138.

    Teixeira, F. G., Carvalho, M. M., Panchalingam, K. M., et al. (2017). Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson's disease. Stem Cells Translational Medicine, 6, 634–646.

    PubMed  Article  CAS  Google Scholar 

  139. 139.

    Kim, M. J., Kim, Z.-H., Kim, S.-M., & Choi, Y.-S. (2016). Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue and Cell, 48, 533–543.

    PubMed  Article  CAS  Google Scholar 

  140. 140.

    Qi, K., Li, N., Zhang, Z., & Melino, G. (2017). Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cellular Immunology.

  141. 141.

    Duplantier, A. J., & van Hoek, M. L. (2013). The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Frontiers in Immunology, 4, 143.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z., & Morrison, S. J. (2016). Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell, 18, 782–796.

    PubMed  Article  CAS  Google Scholar 

  143. 143.

    Li, J., Peng, X., Zeng, X., et al. (2015). Estrogen secreted by mesenchymal stem cells necessarily determines their feasibility of therapeutical application. Scientific Reports, 5, 15286.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of this study was supported by Guilan University of Medical Sciences (grant no: IR.GUMS.REC.1396.343).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehryar Habibi Roudkenar.

Ethics declarations

Conflict of Interest

The authors declare there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abbasi-Malati, Z., Roushandeh, A.M., Kuwahara, Y. et al. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev and Rep 14, 484–499 (2018). https://doi.org/10.1007/s12015-018-9817-x

Download citation

Keywords

  • MSC
  • Secretome
  • Cell-free therapy
  • Condition medium
  • Therapeutic agents