Stem Cell Reviews and Reports

, Volume 14, Issue 4, pp 484–499 | Cite as

Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents

  • Zahra Abbasi-Malati
  • Amaneh Mohammadi Roushandeh
  • Yoshikazu Kuwahara
  • Mehryar Habibi RoudkenarEmail author


Over 10 years, mesenchymal stem cells (MSCs) have been considered as valuable and suitable cells for cell-based therapy applications, particularly in clinical trials. In any case, they are as yet not utilized routinely in clinics. At first, it was believed that MSCs play their roles, especially in regenerative medicine due to their differentiation and cell replacement properties. Interestingly, it is well-known that MSCs mainly exert their therapeutic effects through their vast bioactive factors. These findings turned scientists’ consideration toward cell-free therapy concepts. From this point of view, MSCs can be considered as an arsenal of natural bioreactors in variety of therapeutic agents. MSCs inherently express various important therapeutic agents such as growth factors and cytokines that can be manufactured, handled and stored as a prepared-to-go biologic product. In this review, we provide a vision, highlight as well as discuss in order to introduce competitive natural robust bioreactor MSCs on the horizon.


MSC Secretome Cell-free therapy Condition medium Therapeutic agents 



Part of this study was supported by Guilan University of Medical Sciences (grant no: IR.GUMS.REC.1396.343).

Compliance with Ethical Standards

Conflict of Interest

The authors declare there is no conflict of interest.


  1. 1.
    Youssef A, Aboalola D, & Han VK. (2017). The roles of insulin-like growth factors in mesenchymal stem cell niche. Stem Cells International;2017.Google Scholar
  2. 2.
    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.PubMedCrossRefGoogle Scholar
  3. 3.
    Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., & Perez-Fernandez, R. (2017). Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. International Journal of Molecular Sciences, 18, 1852.PubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kim, H. O., Choi, S.-M., & Kim, H.-S. (2013). Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Engineering and Regenerative Medicine, 10, 93–101.CrossRefGoogle Scholar
  5. 5.
    Ding, D.-C., Shyu, W.-C., & Lin, S.-Z. (2011). Mesenchymal stem cells. Cell Transplantation, 20, 5–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Wakao, S., Kuroda, Y., Ogura, F., Shigemoto, T., & Dezawa, M. (2012). Regenerative effects of mesenchymal stem cells: contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cell, 1, 1045–1060.CrossRefGoogle Scholar
  7. 7.
    Koh, M. B., & Suck, G. (2012). Cell therapy: promise fulfilled? Biologicals, 40, 214–217.PubMedCrossRefGoogle Scholar
  8. 8.
    Phinney, D. G., & Pittenger, M. F. (2017). Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells, 35, 851–858.PubMedCrossRefGoogle Scholar
  9. 9.
    Schoeberlein, A., Mueller, M., Reinhart, U., Sager, R., Messerli, M., & Surbek, D. V. (2011). Homing of placenta-derived mesenchymal stem cells after perinatal intracerebral transplantation in a rat model. American Journal of Obstetrics & Gynecology, 205(277), e1–e6.Google Scholar
  10. 10.
    Mueller, M., Wolfs, T. G., Schoeberlein, A., Gavilanes, A. W., Surbek, D., & Kramer, B. W. (2016). Mesenchymal stem/stromal cells—a key mediator for regeneration after perinatal morbidity? Molecular and Cellular Pediatrics, 3, 6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lee, K. A., Shim, W., Paik, M. J., et al. (2009). Analysis of changes in the viability and gene expression profiles of human mesenchymal stromal cells over time. Cytotherapy, 11, 688–697.PubMedCrossRefGoogle Scholar
  12. 12.
    Han, S.-M., Han, S.-H., Coh, Y.-R., et al. (2014). Enhanced proliferation and differentiation of Oct4-and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Experimental & Molecular Medicine, 46, e101.CrossRefGoogle Scholar
  13. 13.
    Hagberg, H., Mallard, C., Ferriero, D. M., et al. (2015). The role of inflammation in perinatal brain injury. Nature Reviews Neurology, 11, 192.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Francois, S., Mouiseddine, M., Allenet-Lepage, B., et al. (2013). Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed Research International, 2013.Google Scholar
  15. 15.
    Fossett, E., & Khan, W. (2012). Optimising human mesenchymal stem cell numbers for clinical application: a literature review. Stem Cells International, 2012.Google Scholar
  16. 16.
    Amiri, F., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2015). In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments. Cell Stress and Chaperones, 20, 237–251.PubMedCrossRefGoogle Scholar
  17. 17.
    Halabian, R., Tehrani, H. A., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2013). Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell stress and chaperones, 18, 785–800.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kiani, A. A., Kazemi, A., Halabian, R., Mohammadipour, M., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2013). HIF-1α confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Archives of Medical Research, 44, 185–193.PubMedCrossRefGoogle Scholar
  19. 19.
    Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., & Papamichail, M. (2006). Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells, 24, 462–471.PubMedCrossRefGoogle Scholar
  20. 20.
    Duggal, S., & Brinchmann, J. E. (2011). Importance of serum source for the in vitro replicative senescence of human bone marrow derived mesenchymal stem cells. Journal of Cellular Physiology, 226, 2908–2915.PubMedCrossRefGoogle Scholar
  21. 21.
    Kornicka K, Marycz K, Tomaszewski KA, Marędziak M, Śmieszek A. (2015). The effect of age on osteogenic and adipogenic differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress factors in the course of the differentiation process. Oxidative Medicine and Cellular Longevity ;2015.Google Scholar
  22. 22.
    Bertolo, A., Capossela, S., Fränkl, G., Baur, M., Pötzel, T., & Stoyanov, J. (2017). Oxidative status predicts quality in human mesenchymal stem cells. Stem Cell Research & Therapy, 8, 3.CrossRefGoogle Scholar
  23. 23.
    Maredziak, M., Marycz, K., Tomaszewski, K. A., Kornicka, K., & Henry, B. M. (2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International, 2016, 2152435.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sell, S. (2010). On the stem cell origin of cancer. The American Journal of Pathology, 176, 2584–2594.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kucia, M., Reca, R., Miekus, K., et al. (2005). Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells, 23, 879–894.PubMedCrossRefGoogle Scholar
  26. 26.
    Marycz K, Kornicka K, Grzesiak J, Śmieszek A, Szłapka J. (2016). Macroautophagy and selective mitophagy ameliorate chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: New findings in the field of progenitor cells differentiation. Oxidative Medicine and Cellular Longevity ;2016.Google Scholar
  27. 27.
    Yang, D., Wang, W., Li, L., et al. (2013). The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS One, 8, e59020.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Prockop, D. (2007). “Stemness” does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clinical Pharmacology & Therapeutics, 82, 241–243.CrossRefGoogle Scholar
  29. 29.
    Bai, L., Shao, H., Wang, H., et al. (2017). Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Scientific Reports, 7, 4323.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bruno, S., Grange, C., Deregibus, M. C., et al. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology, 20, 1053–1067.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bruno, S., Grange, C., Collino, F., et al. (2012). Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS One, 7, e33115.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Aliotta, J. M., Pereira, M., Wen, S., et al. (2016). Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 110, 319–330.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lee C, Mitsialis SA, Aslam M, et al. (2012). Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation:Circulationaha. 112.114173.Google Scholar
  34. 34.
    Zhang, B., Wang, M., Gong, A., et al. (2015). HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells, 33, 2158–2168.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang, B., Wu, X., Zhang, X., et al. (2015). Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Translational Medicine, 4, 513–522.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bermudez, M. A., Sendon-Lago, J., Eiro, N., et al. (2015). Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Investigative Ophthalmology & Visual Science, 56, 983–992.CrossRefGoogle Scholar
  37. 37.
    Bhang, S. H., Lee, S., Shin, J.-Y., Lee, T.-J., Jang, H.-K., & Kim, B.-S. (2014). Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis. Molecular Therapy, 22, 862–872.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Zagoura DS, Roubelakis MG, Bitsika V, et al. (2011). Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut:gutjnl-2011-300908.Google Scholar
  39. 39.
    Park, B.-S., Kim, W.-S., Choi, J.-S., et al. (2010). Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomedical Research, 31, 27–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Mirabella, T., Cilli, M., Carlone, S., Cancedda, R., & Gentili, C. (2011). Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials, 32, 3689–3699.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee, M. J., Kim, J., Lee, K. I., Shin, J. M., Chae, J. I., & Chung, H. M. (2011). Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy, 13, 165–178.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim, J., Lee, J. H., Yeo, S. M., Chung, H. M., & Chae, J.-I. (2014). Stem cell recruitment factors secreted from cord blood-derived stem cells that are not secreted from mature endothelial cells enhance wound healing. In Vitro Cellular & Developmental Biology-Animal, 50, 146–154.CrossRefGoogle Scholar
  43. 43.
    Ray, P., Devaux, Y., Stolz, D. B., et al. (2003). Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. Proceedings of the National Academy of Sciences, 100, 6098–6103.CrossRefGoogle Scholar
  44. 44.
    Turner J-E, Morrison PJ, Wilhelm C, et al. (2013). IL-9–mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. Journal of Experimental Medicine :jem. 20130071.Google Scholar
  45. 45.
    Bakondi, B., Shimada, I. S., Perry, A., et al. (2009). CD133 identifies a human bone marrow stem/progenitor cell sub-population with a repertoire of secreted factors that protect against stroke. Molecular Therapy, 17, 1938–1947.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Martinez-Agosto, J. A., Mikkola, H. K., Hartenstein, V., & Banerjee, U. (2007). The hematopoietic stem cell and its niche: a comparative view. Genes & Development, 21, 3044–3060.CrossRefGoogle Scholar
  47. 47.
    Beer L, Mildner M, & Ankersmit HJ. (2017). Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Annals of Translational Medicine ;5.Google Scholar
  48. 48.
    Pawitan JA. (2014). Prospect of stem cell conditioned medium in regenerative medicine. BioMed Research International ;2014.Google Scholar
  49. 49.
    Cantinieaux, D., Quertainmont, R., Blacher, S., et al. (2013). Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PLoS One, 8, e69515.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bermudez, M. A., Sendon-Lago, J., Seoane, S., et al. (2016). Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Experimental Eye Research, 149, 84–92.PubMedCrossRefGoogle Scholar
  51. 51.
    Chang, C.-P., Chio, C.-C., Cheong, C.-U., Chao, C.-M., Cheng, B.-C., & Lin, M.-T. (2013). Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clinical Science, 124, 165–176.PubMedCrossRefGoogle Scholar
  52. 52.
    Ionescu, L., Byrne, R. N., van Haaften, T., et al. (2012). Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology-Lung Cellular and Molecular Physiology, 303, L967–LL77.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Katagiri, W., Watanabe, J., Toyama, N., Osugi, M., Sakaguchi, K., & Hibi, H. (2017). Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation. Implant Dentistry, 26, 607–612.PubMedCrossRefGoogle Scholar
  54. 54.
    Legaki, E., Roubelakis, M., Theodoropoulos, G., et al. (2016). Therapeutic potential of secreted molecules derived from human amniotic fluid mesenchymal stem/stroma cells in a mice model of colitis. Stem Cell Reviews and Reports, 12, 604–612.PubMedCrossRefGoogle Scholar
  55. 55.
    Sevivas, N., Teixeira, F. G., Portugal, R., et al. (2017). Mesenchymal stem cell secretome: a potential tool for the prevention of muscle degenerative changes associated with chronic rotator cuff tears. The American Journal of Sports Medicine, 45, 179–188.CrossRefPubMedGoogle Scholar
  56. 56.
    Timmers, L., Lim, S. K., Arslan, F., et al. (2008). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research, 1, 129–137.CrossRefGoogle Scholar
  57. 57.
    Zhou B-R, Xu Y, Guo S-L, et al. (2013). The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BioMed Research International ;2013.Google Scholar
  58. 58.
    Eiró, N., Sendon-Lago, J., Seoane, S., et al. (2014). Potential therapeutic effect of the secretome from human uterine cervical stem cells against both cancer and stromal cells compared with adipose tissue stem cells. Oncotarget, 5, 10692.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ozbey, G., Gorczynski, R., & Erin, N. (2014). Stability of cytokines in supernatants of stimulated mouse immune cells. European Cytokine Network, 25, 30–34.Google Scholar
  60. 60.
    Lai, R. C., Arslan, F., Lee, M. M., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4, 214–222.PubMedCrossRefGoogle Scholar
  61. 61.
    Yu, B., Kim, H. W., Gong, M., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360.PubMedCrossRefGoogle Scholar
  62. 62.
    Xin, H., Li, Y., Cui, Y., Yang, J. J., Zhang, Z. G., & Chopp, M. (2013). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. Journal of Cerebral Blood Flow & Metabolism, 33, 1711–1715.CrossRefGoogle Scholar
  63. 63.
    Ophelders, D. R., Wolfs, T. G., Jellema, R. K., et al. (2016). Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia. Stem Cells Translational Medicine, 5, 754–763.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hu, G.-w., Li, Q., Niu, X., et al. (2015). Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Research & Therapy, 6, 10.CrossRefGoogle Scholar
  65. 65.
    Li, T., Yan, Y., Wang, B., et al. (2012). Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells and Development, 22, 845–854.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tan, C. Y., Lai, R. C., Wong, W., Dan, Y. Y., Lim, S.-K., & Ho, H. K. (2014). Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Research & Therapy, 5, 76.CrossRefGoogle Scholar
  67. 67.
    Rager, T. M., Olson, J. K., Zhou, Y., Wang, Y., & Besner, G. E. (2016). Exosomes secreted from bone marrow-derived mesenchymal stem cells protect the intestines from experimental necrotizing enterocolitis. Journal of Pediatric Surgery, 51, 942–947.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Monsel, A., Zhu, Y.-g., Gennai, S., et al. (2015). Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. American Journal of Respiratory and Critical Care Medicine, 192, 324–336.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gennai, S., Monsel, A., Hao, Q., Park, J., Matthay, M., & Lee, J. (2015). Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. American Journal of Transplantation, 15, 2404–2412.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Choi, M., Ban, T., & Rhim, T. (2014). Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 37, 133.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhang, J., Guan, J., Niu, X., et al. (2015). Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. Journal of Translational Medicine, 13, 49.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fang, S., Xu, C., Zhang, Y., et al. (2016). Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Translational Medicine, 5, 1425–1439.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nakamura, Y., Miyaki, S., Ishitobi, H., et al. (2015). Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Letters, 589, 1257–1265.PubMedCrossRefGoogle Scholar
  74. 74.
    Barry, F., & Murphy, M. (2013). Mesenchymal stem cells in joint disease and repair. Nature Reviews Rheumatology, 9, 584.PubMedCrossRefGoogle Scholar
  75. 75.
    Aghajani Nargesi, A., O Lerman, L., & Eirin, A. (2017). Mesenchymal stem cell-derived extracellular vesicles for renal repair. Current Gene Therapy, 17, 29–42.Google Scholar
  76. 76.
    Roushandeh, A. M., Bahadori, M., & Roudkenar, M. H. (2017). Mesenchymal Stem Cell-based Therapy as a New Horizon for Kidney Injuries. Archives of Medical Research, 48, 133–146.PubMedCrossRefGoogle Scholar
  77. 77.
    Halabian, R., Roudkenar, M. H., Jahanian-Najafabadi, A., Hosseini, K. M., & Tehrani, H. A. (2015). Co-culture of bone marrow-derived mesenchymal stem cells overexpressing lipocalin 2 with HK-2 and HEK293 cells protects the kidney cells against cisplatin-induced injury. Cell Biology International, 39, 152–163.PubMedCrossRefGoogle Scholar
  78. 78.
    Kraitchman, D. L., Tatsumi, M., Gilson, W. D., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112, 1451–1461.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bittira, B., Shum-Tim, D., Al-Khaldi, A., & Chiu, R. C. (2003). Mobilization and homing of bone marrow stromal cells in myocardial infarction. European Journal of Cardio-Thoracic Surgery, 24, 393–398.PubMedCrossRefGoogle Scholar
  80. 80.
    Shake, J. G., Gruber, P. J., Baumgartner, W. A., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. The Annals of Thoracic Surgery, 73, 1919–1926.PubMedCrossRefGoogle Scholar
  81. 81.
    Fontaine, M. J., Shih, H., Schäfer, R., & Pittenger, M. F. (2016). Unraveling the mesenchymal stromal cells' paracrine immunomodulatory effects. Transfusion Medicine Reviews, 30, 37–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Aslam, M., Baveja, R., Liang, O. D., et al. (2009). Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. American Journal of Respiratory and Critical Care Medicine, 180, 1122–1130.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ho, J. C., Lai, W. H., Li, M. F., et al. (2012). Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell-derived endothelial cells. Diabetes/Metabolism Research and Reviews, 28, 462–473.PubMedCrossRefGoogle Scholar
  84. 84.
    Di Santo, S., Yang, Z., von Ballmoos, M. W., et al. (2009). Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One, 4, e5643.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Inukai, T., Katagiri, W., Yoshimi, R., et al. (2013). Novel application of stem cell-derived factors for periodontal regeneration. Biochemical and Biophysical Research Communications, 430, 763–768.PubMedCrossRefGoogle Scholar
  86. 86.
    Sadat, S., Gehmert, S., Song, Y.-H., et al. (2007). The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochemical and Biophysical Research Communications, 363, 674–679.PubMedCrossRefGoogle Scholar
  87. 87.
    See, F., Seki, T., Psaltis, P. J., et al. (2011). Therapeutic effects of human STRO-3-selected mesenchymal precursor cells and their soluble factors in experimental myocardial ischemia. Journal of Cellular and Molecular Medicine, 15, 2117–2129.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Cho, Y. J., Song, H. S., Bhang, S., et al. (2012). Therapeutic effects of human adipose stem cell-conditioned medium on stroke. Journal of Neuroscience Research, 90, 1794–1802.PubMedCrossRefGoogle Scholar
  89. 89.
    Sze, S. K., de Kleijn, D. P., Lai, R. C., et al. (2007). Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular & Cellular Proteomics, 6, 1680–1689.CrossRefGoogle Scholar
  90. 90.
    Xiong, L.-L., Liu, F., Lu, B.-T., et al. (2017). Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews. Frontiers in Cellular Neuroscience, 11, 172.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chen, L., Tredget, E. E., Wu, P. Y., & Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3, e1886.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gao, F., Chiu, S., Motan, D., et al. (2017). Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death & Disease, 7, e2062.CrossRefGoogle Scholar
  93. 93.
    Ruvolo P, Qiu Y, Ruvolo V, et al. (2015). Role of Mesenchymal Stem Cell Galectin 3 in the AML Tumor Microenvironment. Am Soc Hematology.Google Scholar
  94. 94.
    Ling, W., Zhang, J., & Yuan, Z., et al. (2014). Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Research.Google Scholar
  95. 95.
    Lourenco, S., Teixeira, V. H., Kalber, T., Jose, R. J., Floto, R. A., & Janes, S. M. (2015). Macrophage migration inhibitory factor–CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. The Journal of Immunology, 194, 3463–3474.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kim, H. S., Yun, J. W., Shin, T. H., et al. (2015). Human umbilical cord blood mesenchymal stem cell-derived PGE2 and TGF-β1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells, 33, 1254–1266.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Qi, Y., Jiang, D., Sindrilaru, A., et al. (2014). TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. Journal of Investigative Dermatology, 134, 526–537.PubMedCrossRefGoogle Scholar
  99. 99.
    Krasnodembskaya, A., Song, Y., Fang, X., et al. (2010). Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells, 28, 2229–2238.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Németh, K., Leelahavanichkul, A., Yuen, P. S., et al. (2009). Bone marrow stromal cells attenuate sepsis via prostaglandin E 2–dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15, 42.PubMedCrossRefGoogle Scholar
  101. 101.
    Choi, H., Lee, R. H., Bazhanov, N., Oh, J. Y., & Prockop, D. J. (2011). Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood, 118, 330–338.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Keating, A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell, 10, 709–716.PubMedCrossRefGoogle Scholar
  103. 103.
    Fierabracci, A., Del Fattore, A., Muraca, M., Vittorio Delfino, D., & Muraca, M. (2016). The use of mesenchymal stem cells for the treatment of autoimmunity: from animals models to human disease. Current Drug Targets, 17, 229–238.PubMedCrossRefGoogle Scholar
  104. 104.
    Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R., & Fibbe, W. E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34+−derived and monocyte-derived dendritic cells. The Journal of Immunology, 177, 2080–2087.PubMedCrossRefGoogle Scholar
  105. 105.
    English, K., Barry, F. P., & Mahon, B. P. (2008). Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunology Letters, 115, 50–58.PubMedCrossRefGoogle Scholar
  106. 106.
    Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113, 6576–6583.PubMedCrossRefGoogle Scholar
  107. 107.
    Li, Y.-P., Paczesny, S., Lauret, E., et al. (2008). Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. The Journal of Immunology, 180, 1598–1608.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhang, B., Liu, R., Shi, D., et al. (2009). Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2–dependent regulatory dendritic cell population. Blood, 113, 46–57.PubMedCrossRefGoogle Scholar
  109. 109.
    Li, Q., Fang, Y., Li, X., et al. (2013). Mechanism of the plant cytochrome P450 for herbicide resistance: a modelling study. Journal of Enzyme Inhibition and Medicinal Chemistry, 28, 1182–1191.PubMedCrossRefGoogle Scholar
  110. 110.
    Liu, X., Qu, X., Chen, Y., et al. (2012). Mesenchymal stem/stromal cells induce the generation of novel IL-10–dependent regulatory dendritic cells by SOCS3 activation. The Journal of Immunology, 189, 1182–1192.PubMedCrossRefGoogle Scholar
  111. 111.
    Schu, S., Nosov, M., O'Flynn, L., et al. (2012). Immunogenicity of allogeneic mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 16, 2094–2103.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Le Blanc, K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet, 363, 1439–1441.CrossRefGoogle Scholar
  113. 113.
    English, K., French, A., & Wood, K. J. (2010). Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell, 7, 431–442.PubMedCrossRefGoogle Scholar
  114. 114.
    Prigozhina, T. B., Khitrin, S., Elkin, G., Eizik, O., Morecki, S., & Slavin, S. (2008). Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Experimental Hematology, 36, 1370–1376.PubMedCrossRefGoogle Scholar
  115. 115.
    Sudres, M., Norol, F., Trenado, A., et al. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. The Journal of Immunology, 176, 7761–7767.PubMedCrossRefGoogle Scholar
  116. 116.
    Baylink, D. J., Finkelman, R. D., & Mohan, S. (1993). Growth factors to stimulate bone formation. Journal of Bone and Mineral Research, 8.Google Scholar
  117. 117.
    Shim, K. S. (2015). Pubertal growth and epiphyseal fusion. Annals of Pediatric Endocrinology & metabolism, 20, 8–12.CrossRefGoogle Scholar
  118. 118.
    Urist, M. R. (1965). Bone: formation by autoinduction. Science, 150, 893–899.PubMedCrossRefGoogle Scholar
  119. 119.
    Astori, G., Vignati, F., Bardelli, S., et al. (2007). " In vitro" and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. Journal of Translational Medicine, 5, 55.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Guo, J., Nguyen, A., Banyard, D. A., et al. (2016). Stromal vascular fraction: a regenerative reality? Part 2: Mechanisms of regenerative action. Journal of Plastic, Reconstructive & Aesthetic Surgery, 69, 180–188.CrossRefGoogle Scholar
  121. 121.
    Schouten, H. (2006). Neutropenia management. Annals of Oncology, 17, x85–xx9.PubMedCrossRefGoogle Scholar
  122. 122.
    James, R., & Kinsey, S. (2006). The investigation and management of chronic neutropenia in children. Archives of Disease in Childhood, 91, 852–858.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Jubelirer, S. J. (2011). The benefit of the neutropenic diet: fact or fiction? The Oncologist, 16, 704–707.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Steed, D. L. (1997). The role of growth factors in wound healing. Surgical Clinics of North America, 77, 575–586.PubMedCrossRefGoogle Scholar
  125. 125.
    Bermudez, M. A., Sendon-Lago, J., Eiro, N., et al. (2015). Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells effect of CM-hUCESCs on wound healing in dry eye. Investigative Ophthalmology & Visual Science, 56, 983–992.CrossRefGoogle Scholar
  126. 126.
    Ranganath, S. H., Levy, O., Inamdar, M. S., & Karp, J. M. (2012). Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell, 10, 244–258.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Pankajakshan D, & Agrawal DK. (2014). Mesenchymal stem cell paracrine factors in vascular repair and regeneration. Journal of Biomedical Technology and Research 1.Google Scholar
  128. 128.
    Du, Z., Wei, C., Cheng, K., et al. (2013). Mesenchymal stem cell–conditioned medium reduces liver injury and enhances regeneration in reduced-size rat liver transplantation. Journal of Surgical Research, 183, 907–915.PubMedCrossRefGoogle Scholar
  129. 129.
    Forte, A., Finicelli, M., Mattia, M., et al. (2008). Mesenchymal stem cells effectively reduce surgically induced stenosis in rat carotids. Journal of Cellular Physiology, 217, 789–799.PubMedCrossRefGoogle Scholar
  130. 130.
    Forte, A., Rinaldi, B., Sodano, L., et al. (2012). Stem cell therapy for arterial restenosis: potential parameters contributing to the success of bone marrow-derived mesenchymal stromal cells. Cardiovascular Drugs and Therapy, 26, 9–21.PubMedCrossRefGoogle Scholar
  131. 131.
    Shoji, M., Oskowitz, A., Malone, C. D., Prockop, D. J., & Pochampally, R. (2011). Human mesenchymal stromal cells (MSCs) reduce neointimal hyperplasia in a mouse model of flow-restriction by transient suppression of anti-inflammatory cytokines. Journal of Atherosclerosis and Thrombosis, 18, 464–474.PubMedCrossRefGoogle Scholar
  132. 132.
    Takahashi, M., Suzuki, E., Oba, S., et al. (2009). Adipose tissue-derived stem cells inhibit neointimal formation in a paracrine fashion in rat femoral artery. American Journal of Physiology-Heart and Circulatory Physiology, 298, H415–HH23.PubMedCrossRefGoogle Scholar
  133. 133.
    Sato, K., Ozaki, K., Oh, I., et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, 228–234.PubMedCrossRefGoogle Scholar
  134. 134.
    Wang, C.-H., Cherng, W.-J., Yang, N.-I., et al. (2008). Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 54–60.PubMedCrossRefGoogle Scholar
  135. 135.
    Shoji, M., Koba, S., & Kobayashi, Y. (2014). Roles of bone-marrow-derived cells and inflammatory cytokines in neointimal hyperplasia after vascular injury. BioMed Research International 2014.Google Scholar
  136. 136.
    Marędziak, M., Marycz, K., Lewandowski, D., Siudzińska, A., & Śmieszek, A. (2015). Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)—a new approach in veterinary regenerative medicine. In Vitro Cellular & Developmental Biology-Animal, 51, 230–240.CrossRefGoogle Scholar
  137. 137.
    Rajan, T. S., Giacoppo, S., Diomede, F., et al. (2016). The secretome of periodontal ligament stem cells from MS patients protects against EAE. Scientific Reports, 6, 38743.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Teixeira, F. G., Carvalho, M. M., Panchalingam, K. M., et al. (2017). Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson's disease. Stem Cells Translational Medicine, 6, 634–646.PubMedCrossRefGoogle Scholar
  139. 139.
    Kim, M. J., Kim, Z.-H., Kim, S.-M., & Choi, Y.-S. (2016). Conditioned medium derived from umbilical cord mesenchymal stem cells regenerates atrophied muscles. Tissue and Cell, 48, 533–543.PubMedCrossRefGoogle Scholar
  140. 140.
    Qi, K., Li, N., Zhang, Z., & Melino, G. (2017). Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cellular Immunology.Google Scholar
  141. 141.
    Duplantier, A. J., & van Hoek, M. L. (2013). The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Frontiers in Immunology, 4, 143.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z., & Morrison, S. J. (2016). Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell, 18, 782–796.PubMedCrossRefGoogle Scholar
  143. 143.
    Li, J., Peng, X., Zeng, X., et al. (2015). Estrogen secreted by mesenchymal stem cells necessarily determines their feasibility of therapeutical application. Scientific Reports, 5, 15286.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zahra Abbasi-Malati
    • 1
    • 2
  • Amaneh Mohammadi Roushandeh
    • 2
  • Yoshikazu Kuwahara
    • 3
  • Mehryar Habibi Roudkenar
    • 4
    Email author
  1. 1.Blood Transfusion Research CenterHigh Institute for Research and Education in Transfusion MedicineTehranIran
  2. 2.Medical Biotechnology Research Center, Paramedicine FacultyGuilan University of Medical SciencesRashtIran
  3. 3.Division of Radiation Biology and Medicine, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
  4. 4.Cardiovascular Disease Research Center, Department of Cardiology, Heshmat Hospital, School of MedicineGuilan University of Medical SciencesRashtIran

Personalised recommendations