Skip to main content
Log in

Improved Protocol for Chondrogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells -Effect of PTHrP and FGF-2 on TGFβ1/BMP2-Induced Chondrocytes Hypertrophy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Growth factors have a pivotal role in chondrogenic differentiation of stem cells. The differential effects of known growth factors involved in the maintenance and homeostasis of cartilage tissue have been previously studied in vitro. However, there are few reported researches about the interactional effects of growth factors on chondrogenic differentiation of stem cells. The aim of this study is to examine the combined effects of four key growth factors on chondrogenic differentiation of mesenchymal stem cells (MSCs). Isolated and expanded rabbit bone marrow-derived MSCs underwent chondrogenic differentiation in a micromass cell culture system that used a combination of the following growth factors: transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP2), parathyroid hormone related protein (PTHrP), and fibroblast growth factor 2 (FGF2) according to a defined program. The chondrogenic differentiation program was analyzed by histochemistry methods, quantitative RT-PCR (qRT-PCR), and measurement of matrix deposition of sulfated glycosaminoglycan (sGAG) and collagen content at days 16, 23, and 30. The results showed that the short-term combination of TGF-β1 and BMP-2 increased sGAG and collagen content, Alkaline phosphates (ALP) activity, and type X collagen (COL X) expression. Application of either PTHrP or FGF2 simultaneously decreased TGF-β1/BMP-2 induced hypertrophy and chondrogenic markers (at least for FGF2). However, successive application of PTHrP and FGF2 dramatically maintained the synergistic effects of TGF-β1/BMP-2 on the chondrogenic differentiation potential of MSCs and decreased unwanted hypertrophic markers. This new method can be used effectively in chondrogenic differentiation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chimal-Monroy, J., & de Leon, L. D. (2003). Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells. International Journal of Developmental Biology, 41, 91–102.

    Google Scholar 

  2. Sekiya, I., Larson, B. L., Vuoristo, J. T., Reger, R. L., & Prockop, D. J. (2005). Comparison of effect of BMP2,-4, and-6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell and Tissue Research, 320, 269–276.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, L., & Detamore, M. S. (2009). Insulin like growth factor I improves chondrogenesis of predifferentiated human umbilical cord mesenchymal stromal cells. Journal of Orthopaedic Research, 27, 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  4. Moore, E., Bendele, A., Thompson, D., et al. (2005). Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis and Cartilage, 13, 623–631.

    Article  PubMed  CAS  Google Scholar 

  5. Handorf, A. M., & Li, W.-J. (2011). Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS One, 6, e22887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lee, J.-M., & Im, G.-I. (2012). PTHrP isoforms have differing effect on chondrogenic differentiation and hypertrophy of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 421, 819–824.

    Article  PubMed  CAS  Google Scholar 

  7. Indrawattana, N., Chen, G., Tadokoro, M., et al. (2004). Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochemical and Biophysical Research Communications, 320, 914–919.

    Article  PubMed  CAS  Google Scholar 

  8. Fukumoto, T., Sperling, J., Sanyal, A., et al. (2003). Combined effects of insulin-like growth factor-1 and transforming growth factor-β1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis and Cartilage, 11, 55–64.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, H.-J., & Im, G.-I. (2008). Combination of transforming growth factor-beta2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Engineering Part A, 15, 1543–1551.

    Article  CAS  Google Scholar 

  10. Nasatzky, E., Azran, E., Dean, D., Boyan, B. D., & Schwartz, Z. (2000). Parathyroid hormone and transforming growth factor-β1 coregulate chondrocyte differentiation in vitro. Endocrine, 13, 305–313.

    Article  PubMed  CAS  Google Scholar 

  11. Datta, N. S., Pettway, G. J., Chen, C., Koh, A. J., et al. (2007). Cyclin D1 as a target for the proliferative effects of PTH and PTHrP in early osteoblastic cells. Journal of Bone and Mineral Research: the Official Journal of the American Society for Bone and Mineral Research, 22, 951–964.

    Article  CAS  Google Scholar 

  12. Mueller, M. B., Fischer, M., Zellner, J., et al. (2010). Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning. Cells, Tissues, Organs, 192, 158–166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Toh, W. S., Liu, H., Heng, B. C., Rufaihah, A. J., Ye, C. P., & Cao, T. (2005). Combined effects of TGFβ1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation. Growth Factors, 23, 313–321.

    Article  PubMed  CAS  Google Scholar 

  14. Mehlhorn, A., Niemeyer, P., Kaschte, K., et al. (2007). Differential effects of BMP2 and TGF-β1 on chondrogenic differentiation of adipose derived stem cells. Cell Proliferation, 40, 809–823.

    Article  PubMed  CAS  Google Scholar 

  15. Shintani, N., Siebenrock, K. A., & Hunziker, E. B. (2013). TGF- β1 enhances the BMP2-induced chondrogenesis of bovine synovial explants and arrests downstream differentiation at an early stage of hypertrophy. PLoS One, 8, e53086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bettina, K., Tao, Y., & Elda, M. (2011). Interraction of TGF-B and BMP signaling pathways during chondrogenesis. PLoS One, 6, 1–9.

    Google Scholar 

  17. Karamboulas, K., Dranse, H. J., & Underhill, T. M. (2010). Regulation of BMP-dependent chondrogenesis in early limb mesenchyme by TGFβ signals. Journal of Cell Science, 2010(123), 2068–2076.

    Article  CAS  Google Scholar 

  18. Lee, M.-H., Kim, Y.-J., Kim, H.-J., et al. (2003). BMP2-induced Runx2 expression is mediated by Dlx5, and TGF-β1 opposes the BMP2-induced osteoblast differentiation by suppression of Dlx5 expression. Journal of Biological Chemistry, 278, 34387–34394.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, R. H., Kim, B., Choi, I., et al. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry, 14, 311–324.

    Article  PubMed  CAS  Google Scholar 

  20. Liao, J., Hu, N., Zhou, N., et al. (2013). Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS One, 9, e89025.

    Article  CAS  Google Scholar 

  21. Eslaminejad, M. B., Karimi, N., & Shahhoseini, M. (2013). Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors. Histochemistry and Cell Biology, 140, 623–633.

    Article  PubMed  CAS  Google Scholar 

  22. Eslaminejad, M. B., Karimi, N., & Shahhoseini, M. (2011). Enhancement of glycosaminoglycan-rich matrix production in human marrow-derived mesenchymal stem cell chondrogenic culture by lithium chloride and SB216763 treatment. Cell Journal (Yakhteh), 13, 117.

    CAS  Google Scholar 

  23. Eslaminejad, M. B., & Fallah, N. (2014). Small molecule-BIO accelerates and enhances marrow-derived mesenchymal stem cell in vitro chondrogenesis. Iranian Journal of Medical Sciences, 39, 107.

    Google Scholar 

  24. Asano, A., Kimura, K., & Saito, M. (1999). Cold-induced mRNA expression of angiogenic factors in rat brown adipose tissue. Journal of Veterinary Medical Science, 61, 403–409.

    Article  PubMed  CAS  Google Scholar 

  25. Kabiri, A., Esfandiari, E., Hashemibeni, B., Kazemi, M., Mardani, M., & Esmaeili, A. (2012). Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture. Biochemical and Biophysical Research Communications, 424, 234–238.

    Article  PubMed  CAS  Google Scholar 

  26. Ito, T., Sawada, R., Fujiwara, Y., & Tsuchiya, T. (2008). FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-β signaling. Cytotechnology, 56, 1–7.

    Article  PubMed  CAS  Google Scholar 

  27. Solchaga, L. A., Penick, K., Porter, J. D., Goldberg, V. M., Caplan, A. I., & Welter, J. F. (2005). FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow derived mesenchymal stem cells. Journal of Cellular Physiology, 203, 398–409.

    Article  PubMed  CAS  Google Scholar 

  28. Hildner, F., Peterbauer, A., Wolbank, S., et al. (2010). FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-β in human adipose derived stem cells. Journal of Biomedical Materials Research Part A, 94, 978–987.

    PubMed  Google Scholar 

  29. Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., & Yoo, J. U. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238, 265–272.

    Article  PubMed  CAS  Google Scholar 

  30. Solchaga, L. A., Penick, K. J., & Welter, J. F. (2011). Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Mesenchymal Stem Cell Assays and Applications, 698, 253–278.

    Article  CAS  Google Scholar 

  31. Hoemann, C. D., Sun, J., Chrzanowski, V., & Buschmann, M. D. (2002). A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage. Analytical Biochemistry, 300, 1–10.

    Article  PubMed  CAS  Google Scholar 

  32. Hoemann, C. D. (2004). Molecular and biochemical assays of cartilage components. In F. De Ceuninck, M. Sabatini, P. Pastoureau (Eds.), Cartilage and Osteoarthritis. Methods in Molecular Medicine, vol 101. New Jersey: Humana Press.

  33. Kim, Y. J., Kim, H. J., & Im, G. I. (2008). PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochemical and Biophysical Research Communications, 373, 104–108.

    Article  PubMed  CAS  Google Scholar 

  34. Khan, I. M., Francis, L., Theobald, P. S., et al. (2013). In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials, 34, 1478–1487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Minina, E., Wenzel, H. M., Kreschel, C., et al. (2001). BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development, 128, 4523–4534.

    PubMed  CAS  Google Scholar 

  36. Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M., & Vortkamp, A. (2002). Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Developmental Cell, 3, 439–449.

    Article  PubMed  CAS  Google Scholar 

  37. Bosetti, M., Boccafoschi, F., Leigheb, M., Bianchi, A. E., & Cannas, M. (2012). Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 6, 205–213.

    Article  PubMed  CAS  Google Scholar 

  38. Kretzschmar, M., Doody, J., & Massague, J. (1997). Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature, 389, 618.

    Article  PubMed  CAS  Google Scholar 

  39. Aigner, T., Gebhard, P. M., Schmid, E., Bau, B., Harley, V., & Pöschl, E. (2003). SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biology, 22, 363–372.

    Article  PubMed  CAS  Google Scholar 

  40. Brew, C. J., Clegg, P. D., Boot-Handford, R. P., Andrew, J., & Hardingham, T. (2010). Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. Annals of the Rheumatic Diseases, 69, 234–240.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, Q., Johnson, D. M., Haudenschild, D. R., & Goetinck, P. F. (1995). Progression and recapitulation of the chondrocyte differentiation program: cartilage matrix protein is a marker for cartilage maturation. Developmental Biology, 172, 293–306.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks Dr. Mohammadreza Gharaati for his kindly technical advisement. This study was supported by grants from Semnan University of medical science (grant No. H-4155-2014) and Royan institute (grant No. 91000211). All the authors declare that there is no conflict of interest regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamadreza Baghaban Eslaminejad or Aliakbar Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasrabadi, D., Rezaeiani, S., Eslaminejad, M.B. et al. Improved Protocol for Chondrogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells -Effect of PTHrP and FGF-2 on TGFβ1/BMP2-Induced Chondrocytes Hypertrophy. Stem Cell Rev and Rep 14, 755–766 (2018). https://doi.org/10.1007/s12015-018-9816-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9816-y

Keywords

Navigation