Skip to main content

Advertisement

Log in

Dental Pulp Stem Cells - Exploration in a Novel Animal Model: the Tasmanian Devil (Sarcophilus harrisii)

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Dental pulp stem cells (DPSC) are a heterogeneous population of highly proliferative stem cells located in the soft inner pulp tissue of the tooth. Demonstrated to have an affinity for neural differentiation, DPSC have been reported to generate functional Schwann cells (SC) through in vitro differentiation. Both DPSC and SC have neural crest origins, recently a significant population of DPSC have been reported to derive from peripheral nerve-associated glia. The predisposition DPSC have towards the SC lineage is not only a very useful tool for neural regenerative therapies in the medical field, it also holds great promise in the veterinary field. Devil Facial Tumour (DFT) is a clonally transmissible cancer of SC origin responsible for devastating wild populations of the Tasmanian devil. Very few studies have investigated the healthy Tasmanian devil SC (tdSC) for comparative studies between tdSC and DFT cells, and the development and isolation of a tdSC population is yet to be undertaken. A Tasmanian devil DPSC model offers a promising new outlook for DFT research, and the link between SC and DPSC may provide a potential explanation as to how a cancerous SC initially arose in a single Tasmanian devil to then go on to infect others as a parasitic clonal cell line. In this review we explore the current role of DPSC in human regenerative medicine, provide an overview of the Tasmanian devil and the devastating effect of DFT, and highlight the promising potential DPSC techniques pose for DFT research and our current understanding of DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DPSC:

dental pulp stem cell(s)

SC:

Schwann cell(s)

DFT:

Devil Facial Tumour

tdSC:

Tasmanian devil Schwann cell(s)

SCP:

Schwann cell precursor(s)

MSC:

mesenchymal stem cell(s)

ISCT:

International Society for Cellular Therapy

NC:

neural crest

BMMSC:

bone marrow mesenchymal stem cell(s)

hDPSC:

adult human dental pulp stem cell(s)

CNS:

central nervous system

PNS:

peripheral nervous system

CTVT:

Canine Transmissible Venereal Tumour

CL:

Clam Leukaemia

MHC:

major histocompatibility complex

miRNA:

micro ribonucleic acid

PRX:

periaxin

References

  1. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Rodriguez-Lozano, F. J., Bueno, C., Insausti, C. L., et al. (2011). Mesenchymal stem cells derived from dental tissues. International Endodontic Journal, 44, 800–806.

    Article  PubMed  CAS  Google Scholar 

  3. Janebodin, K., Horst, O. V., Ieronimakis, N., et al. (2011). Isolation and characterization of neural crest-derived stem cells from dental pulp of neonatal mice. PLoS One, 6(11), e27526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stokowski, A., Shi, S., Sun, T., Bartold, P. M., Koblar, S. A., & Gronthos, S. (2007). EphB/Ephrin-B interaction mediates adult stem cell attachment, spreading, and migration: implications for dental tissue repair. Stem Cells, 25, 156–164.

    Article  PubMed  CAS  Google Scholar 

  5. Sonoyama, W., Yamaza, T., Gronthos, S., & Shi, H. (2008). Multipotent stem cells in dental pulp. In R. I. Freshney, G. N. Stacey, & J. M. Auerbach (Eds.), Culture of human stem cells (p. 187). Hoboken: Wiley.

    Google Scholar 

  6. Ferro, F., Spelat, R., & Baheney, C. S. (2014). Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. In C. Kioussi (Ed.), Stem Cells and Tissue Repair: Methods and Protocols 1210 (pp. 91–115). New York: Springer.

    Google Scholar 

  7. Tatullo, M., Marrelli, M., Shakesheff, K. M., & White, L. J. (2015). Dental pulp stem cells: function, isolation and applications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 9(11), 1205–1216.

    Article  PubMed  Google Scholar 

  8. Al-Zer, H., Apel, C., Heiland, M., et al. (2015). Enrichment and schwann cell differentiation of neural crest-derived dental pulp stem cells. Vivo, 29(3), 319–326.

    CAS  Google Scholar 

  9. Martens, W., Sanen, K., Georgiou, M., et al. (2014). Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. The FASEB Journal, 28(4), 1634–1643.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaukua, N., Shahidi, M. K., Konstantinidou, C., et al. (2014). Glial origin of mesenchymal stem cells in a tooth model system. Nature, 513, 551–554.

    Article  PubMed  CAS  Google Scholar 

  11. Miletich, I., & Sharpe, P. T. (2004). Neural crest contribution to mammalian tooth formation. Birth Defects Research Part C: Embryo Today: Reviews, 72(2), 200–212.

    Article  CAS  Google Scholar 

  12. Shi, H., Gong, Y., Qiang, L., et al. (2016). Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration. Biomaterials, 89, 25–37.

    Article  PubMed  CAS  Google Scholar 

  13. Al-Zer, H., & Kalbouneh, H. (2015). Dental pulp stem cells-derived schwann cells for peripheral nerve injury regeneration. Neural Regeneration Research, 10(12), 1945–1946.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Loh, R., Bergfeld, J., Hayes, D., et al. (2006). The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Veterinary Pathology, 43, 890–895.

    Article  PubMed  CAS  Google Scholar 

  15. Loh, R., Hayes, D., Mahjoor, A., O'Hara, A., Pyecroft, S., & Raidal, S. (2006). The immunohistochemical characterization of devil facial tumor disease (DFTD) in the Tasmanian devil (Sarcophilus harrisii). Veterinary Pathology, 43, 896–903.

    Article  PubMed  CAS  Google Scholar 

  16. Murchison, E. P., Tovar, C., Hsu, A., et al. (2010). The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science, 327, 84–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pearse, A. M., & Swift, K. (2006). Allograft theory: transmission of devil facial-tumour disease. Nature, 439, 549.

    Article  PubMed  CAS  Google Scholar 

  18. Bender, H. S. (2010). Devil Facial Tumour Disease (DFTD): Using genetics and genomics to investigate infectious disease in an endangered marsupial. In J. E. Deakin, P. D. Waters, & J. A. Marshall Graves (Eds.), Marsupial Genetics and Genomics (pp. 499–515). New York: Springer.

    Chapter  Google Scholar 

  19. Welsh, J. S. (2011). Contagious cancer. The Oncologist, 16(1), 1–4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Belov, K. (2012). Contagious cancer: Lessons from the devil and the dog. BioEssays, 34, 285–292.

    Article  PubMed  Google Scholar 

  21. McCallum, H., & Jones, M. (2012). Infectious cancers in wildlife. In A. A. Aguirre, R. S. Ostfeld, & P. Daszak (Eds.), New directions in conservation medicine: Applied cases of ecological health (pp. 270–283). New York: Oxford University Press, Inc..

    Google Scholar 

  22. Hass, R., Kasper, C., Bohm, S., & Jacobs, R. (2011). Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Communication and Signaling. https://doi.org/10.1186/1478-811X-9-12.

  23. Friedenstein, A., Chailakhjan, R., & Lalykina, K. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferation, 3(4), 393–403.

    Article  CAS  Google Scholar 

  24. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.

    Article  PubMed  CAS  Google Scholar 

  25. Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109(8), 923–940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  PubMed  CAS  Google Scholar 

  27. Horwitz, E. M., Le Blanc, K., Dominici, M., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.

    Article  PubMed  CAS  Google Scholar 

  28. Sharpe, P. T. (2016). Dental mesenchymal stem cells. Development, 143(13), 2273–2280.

    Article  PubMed  CAS  Google Scholar 

  29. Seo, B. M., Miura, M., Gronthos, S., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364, 149–155.

    Article  PubMed  CAS  Google Scholar 

  30. Sonoyama, W., Liu, Y., Fang, D., et al. (2006). Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One, 1(1), e79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Miura, M., Gronthos, S., Zhao, M., et al. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Volponi, A. A., & Sharpe, P. T. (2013). The tooth – a treasure chest of stem cells. British Dental Journal, 215(7), 353–358.

    Article  PubMed  CAS  Google Scholar 

  33. Mayo, V., Sawatari, Y., Huang, C. Y., & Garcia-Godoy, F. (2014). Neural crest-derived dental stem cells – Where we are and where we are going. Journal of Dentistry, 42(9), 1043–1051.

    Article  PubMed  Google Scholar 

  34. Gronthos, S., Brahim, J., Li, W., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81(8), 531–535.

    Article  PubMed  CAS  Google Scholar 

  35. Tovar, C., Pye, R. J., Kreiss, A., et al. (2017). Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils. Scientific Reports. https://doi.org/10.1038/srep43827.

  36. Sloan, A. J., & Smith, A. J. (2007). Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Diseases, 13(2), 151–157.

    Article  PubMed  CAS  Google Scholar 

  37. Huang, A. H. C., Snyder, B. R., Cheng, P. H., & Chan, A. W. S. (2008). Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells, 26, 2654–2663.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Huang, A. H. C., Chen, Y. K., Lin, L. M., Shich, T. Y., & Chan, A. W. S. (2008). Isolation and characterization of dental pulp stem cells from a supernumerary tooth. Journal of Oral Pathology & Medicine, 37, 571–574.

    Article  CAS  Google Scholar 

  39. Huang, G. T., Yamaza, T., Shea, L. D., et al. (2010). Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Engineering: Part A, 16(2), 605–615.

    Article  CAS  Google Scholar 

  40. d'Aquino, R., Papaccio, G., Laino, G., & Graziano, A. (2008). Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Reviews, 4(1), 21–26.

    Article  PubMed  Google Scholar 

  41. Huang, G. T., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Morad, G., Kheiri, L., & Khojasteh, A. (2013). Dental pulp stem cells for in vivo bone regeneration: A systematic review of literature. Archives of Oral Biology, 58, 1818–1827.

    Article  PubMed  CAS  Google Scholar 

  43. Govindasamy, V., Abdullah, A. N., Ronald, V. S., et al. (2010). Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. Journal of Endodontics, 36(9), 1504–1515.

    Article  PubMed  Google Scholar 

  44. Ellis, K. M., O'Carroll, D. C., Lewis, M. D., Rychkov, G. Y., & Koblar, S. A. (2014). Neurogenic potential of dental pulp stem cells isolated from murine incisors. Stem Cell Research & Therapy, 5(30), 1–13.

    Google Scholar 

  45. Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26(7), 1787–1795.

    Article  PubMed  CAS  Google Scholar 

  46. Leong, W. K., Henshall, T. L., Arthur, A., et al. (2012). Human adult dental pulp stem cells enhance poststroke functional recovery through non-neural replacement mechanisms. Stem Cells Translational Medicine, 1(3), 177–187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Huang, C. Y., Pelaez, D., Bendala, J. D., Garcia-Godoy, F., & Cheung, H. S. (2009). Plasiticity of stem cells derived from adut periodontal ligament. Regenerative Medicine, 4(6), 809–821.

    Article  PubMed  Google Scholar 

  48. Williams, M. L. K., & Solnica-Krezel, L. (2017). Regulation of gastrulation movements by emergent cell and tissue interactions. Current Opinion in Cell Biology, 48, 33–39.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Kaplan, K. M., Spivak, J. M., & Bendo, J. A. (2005). Embryology of the spine and associated congenital abnormalities. The Spine Journal, 5, 564–576.

    Article  PubMed  Google Scholar 

  50. Eyal-Giladi, H., & Kochav, S. (1976). From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick I. General morphology. Developmental Biology, 49(2), 321–337.

    Article  PubMed  CAS  Google Scholar 

  51. Chuai, M., Zeng, W., Yang, X., Boychenko, V., Glazier, J. A., & Weijer, C. J. (2006). Cell movement during chick primitive streak formation. Developmental Biology, 296, 137–149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Weston, J. A. (1982). Regulation of neural crest cell migration and differentiation. In J. Gerhard (Ed.), Cell interactions and development (pp. 150–170). New York: Wiley.

    Google Scholar 

  53. Basch, M. L., Bronner-Fraser, M., & Garcia-Castro, M. I. (2006). Specification of the neural crest occurs during gastrulation and requires Pax7. Nature, 441, 218–222.

    Article  PubMed  CAS  Google Scholar 

  54. Le Douarin, N. M., & Kalcheim, C. (1999). The neural crest. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  55. Dupin, E., Creuzet, S., & Le Douarin, N. M. (2006). The contribution of the neural crest to the vertebrate body. Neural Crest Induction and Differentiation, 589, 96–119.

    Article  CAS  Google Scholar 

  56. Le Douarin, N. M., & Dupin, E. (2003). Multipotency of the neural crest. Current Opinion in Genetics & Development, 13, 529–536.

    Article  CAS  Google Scholar 

  57. Kruger, G. M., Mosher, J. T., Bixby, S., Joseph, N., Iwashita, T., & Morrison, S. J. (2002). Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron, 35, 657–669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fernandes, K. J., McKenzie, I. A., Mill, P., et al. (2004). A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 6, 1082–1093.

    Article  PubMed  CAS  Google Scholar 

  59. Sieber-Blum, M., Grim, M., Hu, Y. F., & Szeder, V. (2004). Pluripotent neural crest stem cells in the adult hair follicle. Developmental Dynamics, 231, 258–269.

    Article  PubMed  CAS  Google Scholar 

  60. Fernandes, K. J. L., Toma, J. G., & Miller, F. D. (2008). Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363, 185–198.

    Article  PubMed  CAS  Google Scholar 

  61. Li, H. Y., Say, E. H. M., & Zhou, X. F. (2007). Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells, 25, 2053–2065.

    Article  PubMed  CAS  Google Scholar 

  62. Woodhoo, A., & Sommer, L. (2008). Development of the Schwann cell lineage: From the neural crest to the myelinated nerve. Glia, 56, 1481–1490.

    Article  PubMed  Google Scholar 

  63. Maro, G. S., Vermeren, M., Voiculescu, O., et al. (2004). Neural crest boundary cap cells constitute a sournce of neuronal and glial cells of the PNS. Nature Neuroscience, 7(9), 930–938.

    Article  PubMed  CAS  Google Scholar 

  64. Jones, M., Oakwood, M., Belcher, C. A., et al. (2003). Carnivore concerns: problems, issues and solutions for conserving Australasia’s marsupial carnivores. In M. Jones, C. Dickman, & M. Archer (Eds.), Predators with Pouches: The Biology of Carnivorous Marsupials (pp. 422–434). Collingwood: CSIRO.

    Google Scholar 

  65. Jones, M. E., Paetkau, D., Geffen, E., & Moritz, C. (2004). Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Molecular Ecology, 13(8), 2197–2209.

    Article  PubMed  CAS  Google Scholar 

  66. Hawkins, C. E., Baars, C., Hesterman, H., et al. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation, 131(2), 307–324.

    Article  Google Scholar 

  67. Guiler, E. R. (1970). Obsevations on the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) I. Numbers, home range, movements, and food in two populations. Australian Journal of Zoology, 18, 49–62.

    Article  Google Scholar 

  68. Pemberton, D. (1990). Social organisation and behaviour of the Tasmanian devil, Sarcophilus harrisii. PhD Thesis, Tasmania: University of Tasmania.

  69. Jones, M. E., Cockburn, A., Hamede, R., et al. (2008). Life-history change in disease-ravaged Tasmanian devil populations. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10023–10027.

    Article  PubMed  PubMed Central  Google Scholar 

  70. McCallum, H., & Jones, M. (2006). To lose both would look like carelessness: Tasmanian devil facial tumour disease. PLoS Biology, 4(10), e342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Pyecroft, S. B., Pearse, A., Loh, R., et al. (2007). Towards a case definition for devil facial tumour disease: What is it? EcoHealth, 4(3), 346–351.

    Article  Google Scholar 

  72. Siddle, H. V., Kreiss, A., Eldridge, M. D., et al. (2007). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16221–16226.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Griner, L. A. (1979). Neoplasms in Tasmanian devils (Sarcophilus harrisii). Journal of the National Cancer Institute, 62(3), 589–595.

    Article  PubMed  CAS  Google Scholar 

  74. Canfield, P. J., Hartley, W. J., & Reddacliff, G. L. (1990). Spontaneous proliferations in Australian marsupials - a survey and review. 1. Macropods, koalas, wombats, possums and gliders. Journal of Comparative Pathology, 103, 135–146.

    Article  PubMed  CAS  Google Scholar 

  75. Metzger, M. J., & Goff, S. P. (2016). A sixth modality of infectious disease: Contagious cancer from devils to clams and beyond. PLoS Pathogens, 12(10), e1005904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ostrander, E. A., Davis, B. W., & Ostrander, G. K. (2016). Transmissible tumors: Breaking the cancer paradigm. Trends in Genetics, 32(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  77. Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A., & Weiss, R. A. (2006). Clonal origin and evolution of a transmissible cancer. Cell, 126(3), 477–487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Rebbeck, C. A., Thomas, R., Breen, M., Leroi, A. M., & Burt, A. (2009). Origins and evolution of a transmissible cancer. Evolution, 63(9), 2340–2349.

    Article  PubMed  CAS  Google Scholar 

  79. Carballal, M. J., Barber, B. J., Iglesias, D., & Villalba, A. (2015). Neoplastic diseases of marine bivalves. Journal of Invertebrate Pathology, 131, 83–106.

    Article  PubMed  Google Scholar 

  80. Böttger, S. A., Amarosa, E. J., Geoghegan, P., & Walker, C. W. (2013). Chronic natural occurrence of disseminated neoplasia in select populations of the soft-shell clam, Mya arenaria, in New England. Northeastern Naturalist, 20(3), 430–440.

    Article  Google Scholar 

  81. Hamede, R. K., McCallum, H., & Jones, M. (2008). Seasonal, demographic and density-related patterns of contact between Tasmanian devils (Sarcophilus harrisii): Implications for transmission of devil facial tumour disease. Austral Ecology, 33(5), 614–622.

    Article  Google Scholar 

  82. Woods, G. M., Kreiss, A., Belov, K., Siddle, H. V., Obendorf, D. L., & Muller, H. K. (2007). The immune response of the Tasmanian devil (Sarcophilus harrisii) and Devil Facial Tumour Disease. EcoHealth, 4(3), 338–345.

    Article  Google Scholar 

  83. Ujvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12, 5168–5186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kreiss, A., Tovar, C., Obendorf, D. L., Dun, K., & Woods, G. M. (2011). A murine xenograft model for a transmissible cancer in Tasmanian devils. Veterinary Pathology, 48(2), 475–481.

    Article  PubMed  CAS  Google Scholar 

  85. Kreiss, A., Cheng, Y., Kimble, F., et al. (2011). Allorecognition in the Tasmanian devil (Sarcophilus harrisii), an endangered marsupial species with limited genetic diversity. PLoS One, 6(7), e22402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Siddle, H. V., Kreiss, A., Tovar, C., et al. (2013). Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proceedings of the National Academy of Sciences of the United States of America, 110(13), 5103–5108.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hartline, D. K. (2008). What is myelin? Neuron Glia Biology, 4(2), 153–163.

    Article  PubMed  Google Scholar 

  88. Tovar, C., Obendorf, D., Murchison, E. P., Papenfuss, A. T., Kreiss, A., & Woods, G. M. (2011). Tumor-specific diagnostic marker for transmissible facial tumors of Tasmanian devils: immunohistochemistry studies. Veterinary Pathology, 48(6), 1195–1203.

    Article  PubMed  CAS  Google Scholar 

  89. Burnett, M. G., & Zager, E. L. (2004). Pathophysiology of peripheral nerve injury: a brief review. Neurosurgical Focus, 16(5), 1–7.

    Article  Google Scholar 

  90. Waller, A. (1850). Experiments on the section of glossopharangeal and hypoglossal nerves of the frog and observations of the alternatives produced thereby in the structure of their primitive fibres. Philosophical Transactions of the Royal Society B: Biological Sciences, 140, 423–429.

    Article  Google Scholar 

  91. Coleman, M. P., & Freeman, M. R. (2010). Wallerian degeneration, Wlds, and Nmnat. Annual Review of Neuroscience, 33, 245–267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wei, Y., Zhou, J., Zheng, Z., et al. (2009). An improved method for isolating Schwann cells from postnatal rat sciatic nerves. Cell and Tissue Research, 337, 361–369.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Sir Mark Mitchell Research Foundation and the University of Adelaide, School of Animal and Veterinary Sciences, for providing funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsea M. Graham.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, C.M., Kremer, K.L., Koblar, S.A. et al. Dental Pulp Stem Cells - Exploration in a Novel Animal Model: the Tasmanian Devil (Sarcophilus harrisii). Stem Cell Rev and Rep 14, 500–509 (2018). https://doi.org/10.1007/s12015-018-9814-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-018-9814-0

Keywords

Navigation