Skip to main content

Advertisement

Log in

Stem Cell Transplantation and Physical Exercise in Parkinson’s Disease, a Literature Review of Human and Animal Studies

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The absence of effective and satisfactory treatments that contribute to repairing the dopaminergic damage caused by Parkinson’s Disease (PD) and the limited recovery capacity of the nervous system are troubling issues and the focus of many research and clinical domains. Recent advances in the treatment of PD through stem cell (SC) therapy have recognized their promising restorative and neuroprotective effects that are implicated in the potentiation of endogenous mechanisms of repair and contribute to functional locomotor improvement. Physical exercise (PE) has been considered an adjuvant intervention that by itself induces beneficial effects in patients and animal models with Parkinsonism. In this sense, the combination of both therapies could provide synergic or superior effects for motor recovery, in contrast with their individual use. This review aims to provide an update on recent progress and the potential effectiveness of SC transplantation and PE for the treatment of locomotor deficits in PD. It has reviewed the neuropathological pathways involved in the classical motor symptoms of this condition and the mechanisms of action described in experimental studies that are associated with locomotor enhancement through exercise, cellular transplantation, and their union in some neurodegenerative conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PD:

Parkinson Disease

PE:

Physical Exercise

SCs:

Stem Cells

References

  1. Elbaz, A., Carcaillon, L., Kab, S., & Moisan, F. (2016). Epidemiology of Parkinson’s disease. Revue Neurologique, 172(1), 14–26. https://doi.org/10.1016/j.neurol.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  2. Soundy, A., Stubbs, B., & Roskell, C. (2014). The experience of Parkinson’s disease: a systematic review and meta-ethnography. The Scientific World Journal, 2014, 19. https://doi.org/10.1155/2014/613592.

  3. Kowal, S. L., Dall, T. M., Chakrabarti, R., Storm, M. V., & Jain, A. (2013). The current and projected economic burden of Parkinson’s disease in the United States. Movement Disorders, 28(3), 311–318. https://doi.org/10.1002/mds.25292.

    Article  PubMed  Google Scholar 

  4. Lindgren, P., von Campenhausen, S., Spottke, E., Siebert, U., & Dodel, R. (2005). Cost of Parkinson’s disease in Europe. European Journal of Neurology, 12(s1), 68–73. https://doi.org/10.1111/j.1468-1331.2005.01197.x.

    Article  PubMed  Google Scholar 

  5. Ferreira, D. P. C., das Graças Wanderley de Sales Coriolano, M., & dos Santos Accioly Lins, C. C. (2017). The perspective of caregivers of people with Parkinson’s: an integrative review. Revista Brasileira de Geriatria e Gerontologia, 20(1), 99–109. https://doi.org/10.1590/1981-22562017020.160088.

    Article  Google Scholar 

  6. Schapira, A. H. V., Olanow, C. W., Greenamyre, J. T., & Bezard, E. (2014). Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet, 384(9942), 545–555. https://doi.org/10.1016/S0140-6736(14)61010-2.

    Article  CAS  PubMed  Google Scholar 

  7. Fu, M.-H., Li, C.-L., Lin, H.-L., Chen, P.-C., Calkins, M. J., Chang, Y.-F., & Yang, S.-H. (2015). Stem cell transplantation therapy in Parkinson’s disease. SpringerPlus, 4, 597. https://doi.org/10.1186/s40064-015-1400-1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lunn, J. S., Sakowski, S. A., Hur, J., & Feldman, E. L. (2011). Stem cell technology for neurodegenerative diseases. Annals of Neurology, 70(3), 353–361. https://doi.org/10.1002/ana.22487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ang, E.-T., Tai, Y.-K., Lo, S.-Q., Seet, R., & Soong, T.-W. (2010). Neurodegenerative diseases: exercising toward neurogenesis and neuroregeneration. Frontiers in Aging Neuroscience, 2, 25. https://doi.org/10.3389/fnagi.2010.00025.

    PubMed  PubMed Central  Google Scholar 

  10. Grealish, S., Diguet, E., Kirkeby, A., Mattsson, B., Heuer, A., Bramoulle, Y., & Parmar, M. (2014). Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell, 15(5), 653–665. https://doi.org/10.1016/j.stem.2014.09.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morberg, B. M., Jensen, J., Bode, M., & Wermuth, L. (2014). The impact of high intensity physical training on motor and non-motor symptoms in patients with Parkinson’s disease (PIP): a preliminary study. NeuroRehabilitation, 35(2), 291–298. https://doi.org/10.3233/NRE-141119.

    PubMed  Google Scholar 

  12. Smith, P. F. (2008). Inflammation in Parkinson’s disease: an update. Current Opinion in Investigational Drugs (London, England: 2000), 9(5), 478–484. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18465657.

  13. Reeve, A., Simcox, E., & Turnbull, D. (2014). Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Research Reviews, 14, 19–30. https://doi.org/10.1016/j.arr.2014.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martins-Branco, D., Esteves, A. R., Santos, D., Arduino, D. M., Swerdlow, R. H., Oliveira, C. R., & Cardoso, S. M. (2012). Ubiquitin proteasome system in Parkinson’s disease: a keeper or a witness? Experimental Neurology, 238(2), 89–99. https://doi.org/10.1016/j.expneurol.2012.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lim, K.-L., & Tan, J. M. (2007). Role of the ubiquitin proteasome system in Parkinson’s disease. BMC Biochemistry, 8(Suppl 1), S13. https://doi.org/10.1186/1471-2091-8-S1-S13.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dickson, D. W. (2012). Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harbor Perspectives in Medicine, 2(8), a009258. https://doi.org/10.1101/cshperspect.a009258.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Abeliovich, A., & Gitler, A. D. (2016). Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature, 539(7628), 207–216. https://doi.org/10.1038/nature20414.

    Article  PubMed  Google Scholar 

  18. Visanji, N. P., Brooks, P. L., Hazrati, L.-N., & Lang, A. E. (2013). The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathologica Communications, 1, 2. https://doi.org/10.1186/2051-5960-1-2.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Esteves, A. R. F., Domingues, A. F., Ferreira, I. L., Januário, C., Swerdlow, R. H., Oliveira, C. R., & Cardoso, S. M. (2008). Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion, 8(3), 219–228. https://doi.org/10.1016/j.mito.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  20. Moon, H. E., & Paek, S. H. (2015). Mitochondrial dysfunction in Parkinson’s disease. Experimental Neurobiology, 24(2), 103–116. https://doi.org/10.5607/en.2015.24.2.103.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kelly, N. A., Ford, M. P., Standaert, D. G., Watts, R. L., Bickel, C. S., Moellering, D. R., … Bamman, M. M. (2014). Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson’s disease. Journal of Applied Physiology, 116(5), 582–592. https://doi.org/10.1152/japplphysiol.01277.2013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Russell, A. P., Foletta, V. C., Snow, R. J., & Wadley, G. D. (2014). Skeletal muscle mitochondria: a major player in exercise, health and disease. Biochimica et Biophysica Acta, 1840(4), 1276–1284. https://doi.org/10.1016/j.bbagen.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  23. Niedzielska, E., Smaga, I., Gawlik, M., Moniczewski, A., Stankowicz, P., Pera, J., & Filip, M. (2016). Oxidative stress in neurodegenerative diseases. Molecular Neurobiology, 53(6), 4094–4125. https://doi.org/10.1007/s12035-015-9337-5.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Q., Liu, Y., & Zhou, J. (2015). Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Translational Neurodegeneration, 4, 19. https://doi.org/10.1186/s40035-015-0042-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kones, R. (2010). Parkinson’s disease: mitochondrial molecular pathology, inflammation, statins, and therapeutic neuroprotective nutrition. Nutrition in Clinical Practice, 25(4), 371–389. https://doi.org/10.1177/0884533610373932.

    Article  PubMed  Google Scholar 

  26. Qian, L., Flood, P. M., & Hong, J.-S. (2010). Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. Journal of Neural Transmission, 117(8), 971–979. https://doi.org/10.1007/s00702-010-0428-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Williams, D. R., & Litvan, I. (2013). Parkinsonian syndromes. Continuum: Lifelong Learning in Neurology, 19(5 Movement Disorders), pp. 1189–1212. https://doi.org/10.1212/01.CON.0000436152.24038.e0.

    PubMed  PubMed Central  Google Scholar 

  28. Helmich, R. C., Hallett, M., Deuschl, G., Toni, I., & Bloem, B. R. (2012). Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain, 135(11), 3206–3226. https://doi.org/10.1093/brain/aws023.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Helmich, R. C., Janssen, M. J. R., Oyen, W. J. G., Bloem, B. R., & Toni, I. (2011). Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Annals of Neurology, 69(2), 269–281. https://doi.org/10.1002/ana.22361.

    Article  PubMed  Google Scholar 

  30. Lauzé, M., Daneault, J.-F., & Duval, C. (2016). The effects of physical activity in Parkinson’s disease: a review. Journal of Parkinson’s Disease, 6(4), 685–698. https://doi.org/10.3233/JPD-160790.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Espay, A. J., Beaton, D. E., Morgante, F., Gunraj, C. A., Lang, A. E., & Chen, R. (2009). Impairments of speed and amplitude of movement in Parkinson’s disease: a pilot study. Movement Disorders, 24, 1001–1008. https://doi.org/10.1002/mds.22480.

    Article  PubMed  Google Scholar 

  32. Cano-de-la-Cuerda, R., Pérez-de-Heredia, M., Miangolarra-Page, J. C., Muñoz-Hellín, E., & Fernández-de-las-Peñas, C. (2010). Is there muscular weakness in Parkinsonʼs disease? American Journal of Physical Medicine & Rehabilitation, 89(1), 70–76. https://doi.org/10.1097/PHM.0b013e3181a9ed9b.

    Article  Google Scholar 

  33. Magrinelli, F., Picelli, A., Tocco, P., Federico, A., Roncari, L., Smania, N., … Tamburin, S. (2016). Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinson’s Disease, 2016, 1–18. https://doi.org/10.1155/2016/9832839.

    Article  Google Scholar 

  34. Ding, X., Li, Y., Liu, Z., Zhang, J., Cui, Y., Chen, X., & Chopp, M. (2013). The sonic hedgehog pathway mediates brain plasticity and subsequent functional recovery after bone marrow stromal cell treatment of stroke in mice. Journal of Cerebral Blood Flow & Metabolism, 33(7), 1015–1024. https://doi.org/10.1038/jcbfm.2013.50.

    Article  CAS  Google Scholar 

  35. Takakusaki, K. (2017). Functional neuroanatomy for posture and gait control. Journal of Movement Disorders, 10(1), 1–17. https://doi.org/10.14802/jmd.16062.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Madrazo, I., León, V., Torres, C., Aguilera, M. C., Varela, G., Alvarez, F., & Skurovich, M. (1988). Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease. New England Journal of Medicine, 318(1), 51–51. https://doi.org/10.1056/NEJM198801073180115.

    CAS  PubMed  Google Scholar 

  37. Boronat-García, A., Guerra-Crespo, M., & Drucker-Colín, R. (2017). Historical perspective of cell transplantation in Parkinson’s disease. World Journal of Transplantation, 7(3), 179. https://doi.org/10.5500/wjt.v7.i3.179.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Han, F., Baremberg, D., Gao, J., Duan, J., Lu, X., Zhang, N., & Chen, Q. (2015). Development of stem cell-based therapy for Parkinson’s disease. Translational Neurodegeneration, 4(1), 16. https://doi.org/10.1186/s40035-015-0039-8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lindvall, O., & Kokaia, Z. (2006). Stem cells for the treatment of neurological disorders. Nature, 441(7097), 1094–1096. https://doi.org/10.1038/nature04960.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, X. H., Lu, G., Hu, X., Tsang, K. S., Kwong, W. H., Wu, F. X., … Poon, W. S. (2012). Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson’s disease. BMC Neuroscience, 13, 142. https://doi.org/10.1186/1471-2202-13-142.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ager, R. R., Davis, J. L., Agazaryan, A., Benavente, F., Poon, W. W., LaFerla, F. M., & Blurton-Jones, M. (2015). Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus, 25(7), 813–826. https://doi.org/10.1002/hipo.22405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kempermann, G., Song, H., & Gage, F. H. (2015). Neurogenesis in the adult hippocampus. Cold Spring Harbor Perspectives in Biology, 7(9), a018812. https://doi.org/10.1101/cshperspect.a018812.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Nature Medicine, 10 Suppl, S42–50. https://doi.org/10.1038/nm1064.

    Article  PubMed  Google Scholar 

  44. Park, D., Yang, G., Bae, D. K., Lee, S. H., Yang, Y.-H., Kyung, J., & Kim, Y.-B. (2013). Human adipose tissue-derived mesenchymal stem cells improve cognitive function and physical activity in ageing mice. Journal of Neuroscience Research, 91(5), 660–670. https://doi.org/10.1002/jnr.23182.

    Article  CAS  PubMed  Google Scholar 

  45. Feng, Z., & Gao, F. (2012). Stem cell challenges in the treatment of neurodegenerative disease. CNS Neuroscience & Therapeutics, 18(2), 142–148. https://doi.org/10.1111/j.1755-5949.2011.00239.x.

    Article  CAS  Google Scholar 

  46. Li, R. (2012). Stem cell transplantation for treating Parkinson’s disease: literature analysis based on the web of science. Neural Regeneration Research, 7(16), 1272–1279. https://doi.org/10.3969/j.issn.1673-5374.2012.16.010.

    PubMed  PubMed Central  Google Scholar 

  47. Gerlach, M., Braak, H., Hartmann, A., Jost, W. H., Odin, P., Priller, J., & Schwarz, J. (2002). Current state of stem cell research for the treatment of Parkinson’s disease. Journal of Neurology, 249 Suppl III, 33–35. https://doi.org/10.1007/s00415-002-1307-y.

    Google Scholar 

  48. Mercanti, G., Bazzu, G., & Giusti, P. (2012). A 6-hydroxydopamine in vivo model of Parkinson’s disease. In S. Skaper (Ed.) Neurotrophic factors. Methods in Molecular Biology (Methods and Protocols), Vol. 846. Humana Press.

  49. Glavaski-Joksimovic, A., & Bohn, M. C. (2013). Mesenchymal stem cells and neuroregeneration in Parkinson’s disease. Experimental Neurology, 247, 25–38. https://doi.org/10.1016/j.expneurol.2013.03.016.

    Article  CAS  PubMed  Google Scholar 

  50. Kitada, M., & Dezawa, M. (2012). Parkinson’s disease and mesenchymal stem cells: potential for cell-based therapy. Parkinson’s Disease, 2012, 1–9. https://doi.org/10.1155/2012/873706.

    Article  Google Scholar 

  51. Jin, G., Cho, S., Choi, E., Lee, Y., Yu, X., Choi, K., & Kong, I. (2008). Rat mesenchymal stem cells increase tyrosine hydroxylase expression and dopamine content in ventral mesencephalic cells in vitro. Cell Biology International, 32(11), 1433–1438. https://doi.org/10.1016/j.cellbi.2008.08.014.

    Article  CAS  PubMed  Google Scholar 

  52. Muramatsu, S.-I., Okuno, T., Suzuki, Y., Nakayama, T., Kakiuchi, T., Takino, N., & Tsukada, H. (2009). Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson’s disease. Synapse, 63(7), 541–548. https://doi.org/10.1002/syn.20634.

    Article  CAS  PubMed  Google Scholar 

  53. Bjugstad, K. B., Teng, Y. D., Redmond, D. E., Elsworth, J. D., Roth, R. H., Cornelius, S. K., … Snyder, E. Y. (2008). Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Experimental Neurology, 211(2), 362–369. https://doi.org/10.1016/j.expneurol.2008.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gincberg, G., Arien-Zakay, H., Lazarovici, P., & Lelkes, P. I. (2012). Neural stem cells: therapeutic potential for neurodegenerative diseases. British Medical Bulletin, 104(1), 7–19. https://doi.org/10.1093/bmb/lds024.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, J.-M., & An, J. (2007). Cytokines, inflammation and pain. International Anesthesiology Clinics, 45(2), 27–37. https://doi.org/10.1097/AIA.0b013e318034194e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marks, W. J., Ostrem, J. L., Verhagen, L., Starr, P. A., Larson, P. S., Bakay, R. A., … Bartus, R. T. (2008). Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2–neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. The Lancet Neurology, 7(5), 400–408. https://doi.org/10.1016/S1474-4422(08)70065-6.

    Article  PubMed  Google Scholar 

  57. Mittermeyer, G., Christine, C. W., Rosenbluth, K. H., Baker, S. L., Starr, P., Larson, P., … Bankiewicz, K. S. (2012). Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Human Gene Therapy, 23(4), 377–381. https://doi.org/10.1089/hum.2011.220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Venkataramana, N. K., Kumar, S. K. V., Balaraju, S., Radhakrishnan, R. C., Bansal, A., Dixit, A., … Totey, S. M. (2010). Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Translational Research, 155(2), 62–70. https://doi.org/10.1016/j.trsl.2009.07.006.

    Article  CAS  PubMed  Google Scholar 

  59. Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W.-Y., DuMouchel, W., Kao, R., … Fahn, S. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New England Journal of Medicine, 344(10), 710–719. https://doi.org/10.1056/NEJM200103083441002.

    Article  CAS  PubMed  Google Scholar 

  60. Piccini, P., Brooks, D. J., Björklund, A., Gunn, R. N., Grasby, P. M., Rimoldi, O., … Lindvall, O. (1999). Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nature Neuroscience, 2(12), 1137–1140. https://doi.org/10.1038/16060.

    Article  CAS  PubMed  Google Scholar 

  61. Kefalopoulou, Z., Politis, M., Piccini, P., Mencacci, N., Bhatia, K., Jahanshahi, M., … Foltynie, T. (2014). Long-term clinical outcome of fetal cell transplantation for Parkinson disease. JAMA Neurology, 71(1), 83. https://doi.org/10.1001/jamaneurol.2013.4749.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Piccini, P., Pavese, N., Hagell, P., Reimer, J., Björklund, A., Oertel, W. H., … Lindvall, O. (2005). Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain, 128(12), 2977–2986. https://doi.org/10.1093/brain/awh649.

    Article  PubMed  Google Scholar 

  63. Stoker, T. B., Blair, N. F., & Barker, R. A. (2017). Neural grafting for Parkinson’s disease: challenges and prospects. Neural Regeneration Research. https://doi.org/10.4103/1673-5374.202935.

    PubMed  PubMed Central  Google Scholar 

  64. Marędziak, M., Marycz, K., Tomaszewski, K. A., Kornicka, K., & Henry, B. M. (2016). The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells International, 2016, 2152435. https://doi.org/10.1155/2016/2152435.

    PubMed  PubMed Central  Google Scholar 

  65. Voelcker-Rehage, C., & Niemann, C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neuroscience & Biobehavioral Reviews, 37(9), 2268–2295. https://doi.org/10.1016/j.neubiorev.2013.01.028.

    Article  Google Scholar 

  66. Hayes, S. M., Hayes, J. P., Cadden, M., & Verfaellie, M. (2013). A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Frontiers in Aging Neuroscience, 5, 31. https://doi.org/10.3389/fnagi.2013.00031.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Svensson, M., Lexell, J., & Deierborg, T. (2015). Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior. Neurorehabilitation and Neural Repair, 29(6), 577–589. https://doi.org/10.1177/1545968314562108.

    Article  PubMed  Google Scholar 

  68. Erickson, K. I., Leckie, R. L., & Weinstein, A. M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35, S20–S28. https://doi.org/10.1016/j.neurobiolaging.2014.03.034.

    Article  PubMed  Google Scholar 

  69. de Salles, B. F., Simão, R., Fleck, S. J., Dias, I., Kraemer-Aguiar, L. G., & Bouskela, E. (2010). Effects of resistance training on cytokines. International Journal of Sports Medicine, 31(7), 441–450. https://doi.org/10.1055/s-0030-1251994.

    Article  PubMed  Google Scholar 

  70. Calle, M. C., & Fernandez, M. L. (2010). Effects of resistance training on the inflammatory response. Nutrition Research and Practice, 4(4), 259–269. https://doi.org/10.4162/nrp.2010.4.4.259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oliveira, S. L. B., Pillat, M. M., Cheffer, A., Lameu, C., Schwindt, T. T., & Ulrich, H. (2013). Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry Part A, 83A(1), 76–89. https://doi.org/10.1002/cyto.a.22161.

    Article  CAS  Google Scholar 

  72. Marycz, K., Mierzejewska, K., Śmieszek, A., Suszynska, E., Malicka, I., Kucia, M., & Ratajczak, M. Z. (2016). Endurance exercise mobilizes developmentally early stem cells into peripheral blood and increases their number in bone marrow: implications for tissue regeneration. Stem Cells International. https://doi.org/10.1155/2016/5756901.

    PubMed Central  Google Scholar 

  73. Chen, W.-W., Zhang, X., & Huang, W.-J. (2016). Role of physical exercise in Alzheimer’s disease. Biomedical Reports, 4(4), 403–407. https://doi.org/10.3892/br.2016.607.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Aguiar, A. S., Castro, A. A., Moreira, E. L., Glaser, V., Santos, A. R. S., Tasca, C. I., … Kramer, A. (2011). Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mechanisms of Ageing and Development, 132(11–12), 560–567. https://doi.org/10.1016/j.mad.2011.09.005.

    Article  CAS  PubMed  Google Scholar 

  75. Tuon, T., Souza, P. S., Santos, M. F., et al. (2015). Physical training regulates mitochondrial parameters and neuroinflammatory mechanisms in an experimental model of Parkinson’s disease. Oxidative Medicine and Cellular Longevity, 2015, 10. https://doi.org/10.1155/2015/261809.

  76. Corona, J. C., & Duchen, M. R. (2015). PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochemical Research, 40(2), 308–316. https://doi.org/10.1007/s11064-014-1377-0.

    Article  CAS  PubMed  Google Scholar 

  77. Lau, Y.-S., Patki, G., Das-Panja, K., Le, W.-D., & Ahmad, S. O. (2011). Neuroprotective effects and mechanisms of exercise in a chronic mouse model of Parkinson’s disease with moderate neurodegeneration. The European Journal of Neuroscience, 33(7), 1264–1274. https://doi.org/10.1111/j.1460-9568.2011.07626.x.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ahlskog, J. E. (2011). Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology, 77(3), 288–294. https://doi.org/10.1212/WNL.0b013e318225ab66.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Barber-Singh, J., Seo, B. B., Nakamaru-Ogiso, E., Lau, Y. S., Matsuno-Yagi, A., & Yagi, T. (2009). Neuroprotective effect of long-term NDI1 gene expression in a chronic mouse model of Parkinson disorder. Rejuvenation Research, 12, 259–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phillips, C., Baktir, M. A., Srivatsan, M., & Salehi, A. (2014). Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience, 8, 170. https://doi.org/10.3389/fncel.2014.00170.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tambosco, L., Percebois-Macadré, L., Rapin, A., Nicomette-Bardel, J., & Boyer, F.-C. (2014). Effort training in Parkinson’s disease: a systematic review. Annals of Physical and Rehabilitation Medicine, 57(2), 79–104. https://doi.org/10.1016/j.rehab.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  82. Xu, Q., Park, Y., Huang, X., Hollenbeck, A., Blair, A., Schatzkin, A., & Chen, H. (2010). Physical activities and future risk of Parkinson disease. Neurology, 75(4), 341–348. https://doi.org/10.1212/WNL.0b013e3181ea1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, S.-Y., Wang, T.-F., Yu, L., Jen, C. J., Chuang, J.-I., Wu, F.-S., … Kuo, Y.-M. (2011). Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain, Behavior, and Immunity, 25(1), 135–146. https://doi.org/10.1016/j.bbi.2010.09.006.

    Article  CAS  PubMed  Google Scholar 

  84. Robertson, C. L., Ishibashi, K., Chudzynski, J., Mooney, L. J., Rawson, R. A., Dolezal, B. A., … London, E. D. (2016). Effect of exercise training on striatal dopamine D2/D3 receptors in methamphetamine users during behavioral treatment. Neuropsychopharmacology, 41, 1629–1636. https://doi.org/10.1038/npp.2015.331.

    Article  CAS  PubMed  Google Scholar 

  85. Vučković, M. G., Li, Q., Fisher, B., Nacca, A., Leahy, R. M., Walsh, J. P., … Petzinger, G. M. (2010). Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: in vivo imaging with [18F]Fallypride. Movement Disorders, 25(16), 2777–2784. https://doi.org/10.1002/mds.23407.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Borrione, P., Tranchita, E., Sansone, P., & Parisi, A. (2014). Effects of physical activity in Parkinson’s disease: a new tool for rehabilitation. World Journal of Methodology, 4(3), 133. https://doi.org/10.5662/wjm.v4.i3.133.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Morgan, J. A., Corrigan, F., & Baune, B. T. (2015). Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations. Journal of Molecular Psychiatry, 3, 3. https://doi.org/10.1186/s40303-015-0010-8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. VanLeeuwen, J.-E., Petzinger, G. M., Walsh, J. P., Akopian, G. K., Vuckovic, M., & Jakowec, M. W. (2010). Altered AMPA receptor expression with treadmill exercise in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience Research, 88, 650–668. https://doi.org/10.1002/jnr.22216.

    CAS  PubMed  Google Scholar 

  89. Frazzitta, G., Balbi, P., Maestri, R., Bertotti, G., Boveri, N., & Pezzoli, G. (2013). The beneficial role of intensive exercise on Parkinson disease progression. American Journal of Physical Medicine & Rehabilitation, 92(6), 523–532. https://doi.org/10.1097/PHM.0b013e31828cd254.

    Article  Google Scholar 

  90. Rojas Vega, S., Knicker, A., Hollmann, W., Bloch, W., & Strüder, H. K. (2010). Effect of resistance exercise on serum levels of growth factors in humans. Hormone and Metabolic Research, 42(13), 982–986. https://doi.org/10.1055/s-0030-1267950.

    Article  CAS  PubMed  Google Scholar 

  91. Seo, J. H., & Cho, S.-R. (2012). Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials. Yonsei Medical Journal, 53(6), 1059–1067. https://doi.org/10.3349/ymj.2012.53.6.1059.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sadan, O., Shemesh, N., Barzilay, R., Dadon-Nahum, M., Blumenfeld-Katzir, T., Assaf, Y., … Offen, D. (2012). Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington’s disease. Experimental Neurology, 234(2), 417–427. https://doi.org/10.1016/j.expneurol.2011.12.045.

    Article  CAS  PubMed  Google Scholar 

  93. Petzinger, G. M., Fisher, B. E., McEwen, S., Beeler, J. A., Walsh, J. P., & Jakowec, M. W. (2013). Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. The Lancet Neurology, 12(7), 716–726. https://doi.org/10.1016/S1474-4422(13)70123-6.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yau, S., Gil-Mohapel, J., Christie, B. R., & So, K. (2014). Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? BioMed Research International, 2014, 403120. https://doi.org/10.1155/2014/403120.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sinelnyk, A. A., Klunnyk, M. O., Demchuk, M. P., Sych, N. S., Ivankova, O. V., et al. (2015) Combined therapy using fetal stem cells and a complex of physical exercises in treatment of patients with amyotrophic lateral sclerosis. Integrative Molecular Medicine 2. https://doi.org/10.15761/IMM.1000178.

  96. Kim, Y.-M., Seo, T.-B., Kim, C.-J., & Ji, E.-S. (2017). Treadmill exercise with bone marrow stromal cells transplantation potentiates recovery of locomotor function after spinal cord injury in rats. Journal of Exercise Rehabilitation, 13(3), 273–278. https://doi.org/10.12965/jer.1735014.507.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nicola, F. C., Rodrigues, L. P., Crestani, T., Quintiliano, K., Sanches, E. F., Willborn, S., … Netto, C. A. (2016). Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury. Brazilian Journal of Medical and Biological Research, 49(9). https://doi.org/10.1590/1414-431X20165319.

  98. Wang, J., Yang, C.-C., Chen, S.-C., & Hsieh, Y.-L. (2010). No synergistic effect of mesenchymal stem cells and exercise on functional recovery following sciatic nerve transection. Functional Neurology, 25(1), 33–43. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20626995.

  99. Swain, R. A., Berggren, K. L., Kerr, A. L., Patel, A., Peplinski, C., & Sikorski, A. M. (2012). On aerobic exercise and behavioral and neural plasticity. Brain Sciences, 2(4), 709–744. https://doi.org/10.3390/brainsci2040709.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Murray, D. K., Sacheli, M. A., Eng, J. J., & Stoessl, A. J. (2014). The effects of exercise on cognition in Parkinson’s disease: a systematic review. Translational Neurodegeneration, 3, 5. https://doi.org/10.1186/2047-9158-3-5.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gallaway, P. J., Miyake, H., Buchowski, M. S., Shimada, M., Yoshitake, Y., Kim, A. S., & Hongu, N. (2017). Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sciences, 7(2). https://doi.org/10.3390/brainsci7020022.

  102. Wildes, T. M., Stirewalt, D. L., Medeiros, B., & Hurria, A. (2014). Hematopoietic stem cell transplantation for hematologic malignancies in older adults: geriatric principles in the transplant clinic. Journal of the National Comprehensive Cancer Network: JNCCN, 12(1), 128–136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24453296.

  103. Hacker, E. D., Larson, J. L., & Peace, D. (2011). Exercise in patients receiving hematopoietic stem cell transplantation: lessons learned and results from a feasibility study. Oncology Nursing Forum, 38(2), 216–223. https://doi.org/10.1188/11.ONF.216-223.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Persoon, S., Kersten, M. J., van der Weiden, K., Buffart, L. M., Nollet, F., Brug, J., & Chinapaw, M. J. M. (2013). Effects of exercise in patients treated with stem cell transplantation for a hematologic malignancy: a systematic review and meta-analysis. Cancer Treatment Reviews, 39(6), 682–690. https://doi.org/10.1016/j.ctrv.2013.01.001.

    Article  PubMed  Google Scholar 

  105. Persoon, S., ChinAPaw, M. J. M., Buffart, L. M., Liu, R. D. K., Wijermans, P., Koene, H. R., … Kersten, M. J. (2017). Randomized controlled trial on the effects of a supervised high intensity exercise program in patients with a hematologic malignancy treated with autologous stem cell transplantation: results from the EXIST study. PloS One, 12(7), e0181313. https://doi.org/10.1371/journal.pone.0181313.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Jenny Paola Berrío acknowledges the financial assistance to (CAPES) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaison Daniel Cucarián Hurtado.

Ethics declarations

Conflict of Interest

The Authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurtado, J.D.C., Sánchez, J.P.B., Nunes, R.B. et al. Stem Cell Transplantation and Physical Exercise in Parkinson’s Disease, a Literature Review of Human and Animal Studies. Stem Cell Rev and Rep 14, 166–176 (2018). https://doi.org/10.1007/s12015-017-9798-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9798-1

Keywords

Navigation