Stem Cell Reviews and Reports

, Volume 14, Issue 2, pp 277–285 | Cite as

Identification of a Novel High Yielding Source of Multipotent Adult Human Neural Crest-Derived Stem Cells

  • Matthias Schürmann
  • Viktoria Brotzmann
  • Marlena Bütow
  • Johannes Greiner
  • Anna Höving
  • Christian Kaltschmidt
  • Barbara Kaltschmidt
  • Holger Sudhoff
Article

Abstract

Due to their extraordinarily broad differentiation potential and persistence during adulthood, adult neural crest-derived stem cells (NCSCs) are highly promising candidates for clinical applications, particularly when facing the challenging treatment of neurodegenerative diseases or complex craniofacial injuries. Successful application of human NCSCs in regenerative medicine and pharmaceutical research mainly relies on the availability of sufficient amounts of tissue for cell isolation procedures. Facing this challenge, we here describe for the first time a novel population of NCSCs within the middle turbinate of the human nasal cavity. From a surgical point of view, high amounts of tissue are routinely and easily removed during nasal biopsies. Investigating the presence of putative stem cells in obtained middle turbinate tissue by immunohistochemistry, we observed Nestin+/p75NTR+/S100+/α smooth muscle actin (αSMA) cells, which we successfully isolated and cultivated in vitro. Cultivated middle turbinate stem cells (MTSCs) kept their expression of neural crest and stemness markers Nestin, p75 NTR and S100 and showed the capability of sphere formation and clonal growth, indicating their stem cell character. Application of directed in vitro differentiation assays resulted in successful differentiation of MTSCs into osteogenic and neuronal cell types. Regarding the high amount of tissue obtained during surgery as well as their broad differentiation capability, MTSCs seem to be a highly promising novel neural crest stem cell population for applications in cell replacement therapy and pharmacological research.

Keywords

NCSCs Human Nasal cavity Middle turbinate Neural crest Adult stem cells 

Notes

Compliance with Ethical Standards

Conflicts of Interest

We have no conflicts of interest relevant to the content of this article. Human nasal middle turbinates and adipose tissue were obtained via routine nasal surgery after informed written consent according to local and international guidelines (Bezirksregierung Detmold/Münster). Isolation and further experimental procedures were ethically approved by the ethics commission of the Ärztekammer Westfalen-Lippe and the medical faculty of the Westfälische Wilhems-Universität (Münster, Germany).

Supplementary material

12015_2017_9797_MOESM1_ESM.jpg (4.8 mb)
Supplementary figure S1: Isolated hMSCs show characteristic morphology, expression profile and differentiation capability into mesodermal cell types. (A)Isolated MSCs show characteristic morphology. (B) RT-PCR and qPCR-analysis revealed the expression of MSC markers CD105, CD106, CD90, CD29, CD73 while lacking expression of non-MSC markers CD45 and CD13. (C) Expression of CD105 in isolated hMSCs was validated on protein level using flow cytometry. (D) hMSCs were able to differentiate into osteogenic cell types visualized by Alizarin red S-stained calcium deposition and adipogenic cells containing Oil red O-positive lipid droplets. (JPG 4956 KB)

References

  1. 1.
    Wagers, A. J., & Weissman, I. L. Plasticity of adult stem cells. Cell 2004;116:639 – 48.Google Scholar
  2. 2.
    Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.PubMedGoogle Scholar
  3. 3.
    Collins, C. A., Olsen, I., Zammit, P. S., et al. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122, 289–301.CrossRefPubMedGoogle Scholar
  4. 4.
    Clewes, O., Narytnyk, A., Gillinder, K. R., Loughney, A. D., Murdoch, A. P., & Sieber-Blum, M. Human epidermal neural crest stem cells (hepi-ncsc)-characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Reviews 2011.Google Scholar
  5. 5.
    Dupin, E., & Sommer, L. (2012). Neural crest progenitors and stem cells: from early development to adulthood. Developmental Biology, 366, 83–95.CrossRefPubMedGoogle Scholar
  6. 6.
    Murrell, W., Feron, F., Wetzig, A., et al. (2005). Multipotent stem cells from adult olfactory mucosa. Developmental Dynamics, 233, 496–515.CrossRefPubMedGoogle Scholar
  7. 7.
    Müller, J., Ossig, C., Greiner, J. F., et al. (2015). Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in Parkinsonian rats. Stem Cells Translational Medicine, 4, 31–43.014.CrossRefPubMedGoogle Scholar
  8. 8.
    His, W. (1868). Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hühnchens im Ei. Leipzig: Vogel.CrossRefGoogle Scholar
  9. 9.
    Kaltschmidt, B., Kaltschmidt, C., & Widera, D. (2012). Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Reviews, 8, 658 – 71.CrossRefPubMedGoogle Scholar
  10. 10.
    Toma, J. G., Akhavan, M., Fernandes, K. J., et al. (2001). Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biology, 3, 778 – 84.CrossRefPubMedGoogle Scholar
  11. 11.
    Hauser, S., Widera, D., Qunneis, F., et al. (2012). Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate. Stem Cells and Development, 21, 742 – 56.CrossRefPubMedGoogle Scholar
  12. 12.
    Tabakow, P., Raisman, G., Fortuna, W., et al. Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplantation 2014.Google Scholar
  13. 13.
    Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26, 1787–1795.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakashima, T., Kimmelman, C. P., & Snow, J. B. Jr. (1984). Structure of human fetal and adult olfactory neuroepithelium. Archives of Otolaryngology, 110, 641–646.CrossRefPubMedGoogle Scholar
  15. 15.
    Feron, F., Perry, C., Cochrane, J., et al. (2005). Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain, 128, 2951–2960.CrossRefPubMedGoogle Scholar
  16. 16.
    Murrell, W., Wetzig, A., Donnellan, M., et al. (2008). Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson’s disease. Stem Cells, 26, 2183–2192.CrossRefPubMedGoogle Scholar
  17. 17.
    Mackay-Sim, A. (2005). Olfactory ensheathing cells and spinal cord repair. The Keio Journal of Medicine, 54, 8–14.CrossRefPubMedGoogle Scholar
  18. 18.
    Greiner, J. F., Hauser, S., Widera, D., et al. (2011). Efficient animal-serum free 3D cultivation method for adult human neural crest-derived stem cell therapeutics. European Cell & Materials, 22, 403 – 19.CrossRefGoogle Scholar
  19. 19.
    Hofemeier, A. D., Hachmeister, H., Pilger, C., et al. (2016). Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Scientific Reports, 6, 26716.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Muller, J., Greiner, J. F., Zeuner, M., et al. (2016). 1,8-Cineole potentiates IRF3-mediated antiviral response in human stem cells and in an ex vivo model of rhinosinusitis. Clinical Science (London), 130, 1339–1352.CrossRefGoogle Scholar
  21. 21.
    Delorme, B., Nivet, E., Gaillard, J., et al. (2010). The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells and Development, 19, 853 – 66.CrossRefPubMedGoogle Scholar
  22. 22.
    Damm, M., Vent, J., Schmidt, M., et al. (2002). Intranasal volume and olfactory function. Chemical Senses, 27, 831–839.CrossRefPubMedGoogle Scholar
  23. 23.
    Barnett, S. C., Alexander, C. L., Iwashita, Y., et al. (2000). Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain, 123(Pt 8), 1581–1588.CrossRefPubMedGoogle Scholar
  24. 24.
    Barraud, P., Seferiadis, A. A., Tyson, L. D., et al. (2010)Neural crest origin of olfactory ensheathing glia. Proceedings of the National Academy of Sciences of the United States of America ;107:21040–5.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Viktorov, I. V., Savchenko, E. A., & Chekhonin, V. P. (2007). Spontaneous neural differentiation of stem cells in culture of human olfactory epithelium. Bulletin of Experimental Biology and Medicine, 144, 596–601.CrossRefPubMedGoogle Scholar
  26. 26.
    Jahed, A., Rowland, J. W., McDonald, T., Boyd, J. G., Doucette, R., & Kawaja, M. D. (2007). Olfactory ensheathing cells express smooth muscle alpha-actin in vitro and in vivo. The Journal of Comparative Neurology, 503, 209 – 23.CrossRefPubMedGoogle Scholar
  27. 27.
    Nivet, E., Vignes, M., Girard, S. D., et al. (2011). Engraftment of human nasal olfactory stem cells restores neuroplasticity in mice with hippocampal lesions. The Journal of Clinical Investigation, 121, 2808–2820.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dayal, A., Rhee, J. S., & Garcia, G. J. (2016). Impact of middle versus inferior total turbinectomy on nasal aerodynamics. Otolaryngology–Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and. Neck Surgery, 155, 518 – 25.CrossRefGoogle Scholar
  29. 29.
    Scheithauer, M. O. (2010). Surgery of the turbinates and “empty nose” syndrome. GMS Current Topics Otorhinolaryngol Head Neck Surgery, 9, Doc03.Google Scholar
  30. 30.
    Modi, P., & Rahamim, J. (2005). Fibrin sealant treatment of splenic injuries during oesophagectomy. European Journal Cardiothoracic Surgery, 28, 167–168.CrossRefGoogle Scholar
  31. 31.
    Dahlstrom, K. K., Weis-Fogh, U. S., Medgyesi, S., Rostgaard, J., & Sorensen, H. The use of autologous fibrin adhesive in skin transplantation. Plastic and Reconstructive Surgery 1992;89:968 – 72; discussion 73 – 6.Google Scholar
  32. 32.
    Gerard, C., Forest, M. A., Beauregard, G., Skuk, D., & Tremblay, J. P. (2012). Fibrin gel improves the survival of transplanted myoblasts. Cell Transplantation, 21(1), 127 – 37.CrossRefPubMedGoogle Scholar
  33. 33.
    Ho, W., Tawil, B., Dunn, J. C., & Wu, B. M. (2006). The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Engineering, 12, 1587–1595.CrossRefPubMedGoogle Scholar
  34. 34.
    Peterbauer-Scherb, A., Danzer, M., Gabriel, C., van Griensven, M., Redl, H., & Wolbank, S. (2012). In vitro adipogenesis of adipose-derived stem cells in 3D fibrin matrix of low component concentration. Journal Tissue of Engineering and Regenerative Medicine, 6, 434 – 42.CrossRefGoogle Scholar
  35. 35.
    Greiner, J. F., Grunwald, L. M., Muller, J., et al. (2014). Culture bag systems for clinical applications of adult human neural crest-derived stem cells. Stem Cell Research & Therapy, 5, 34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Matthias Schürmann
    • 1
  • Viktoria Brotzmann
    • 1
  • Marlena Bütow
    • 1
  • Johannes Greiner
    • 2
  • Anna Höving
    • 2
  • Christian Kaltschmidt
    • 2
  • Barbara Kaltschmidt
    • 2
    • 3
  • Holger Sudhoff
    • 1
  1. 1.Department of OtolaryngologyHead and Neck SurgeryBielefeldGermany
  2. 2.Department of Cell BiologyUniversity of BielefeldBielefeldGermany
  3. 3.AG Molecular NeurobiologyUniversity of BielefeldBielefeldGermany

Personalised recommendations