Beneficial Role of Low-Intensity Laser Irradiation on Neural β-tubulin III Protein Expression in Human Bone Marrow Multipotent Mesenchymal Stromal Cells

Abstract

The purpose of the present study was to evaluate the neural protein expression pattern of human multipotent mesenchymal stromal cells (hMSCs) treated with forskolin (free-form/FF). The study investigated forskolin’s capacity to enhance intracellular levels of cyclic adenosine monophosphate (cAMP) by activating adenylate cyclase and probably by inducing neuron-like cells in vitro. In addition, because nanotechnology is a growing field of tissue engineering, we also assessed the action of a new system called the nanostructured-forskolin (NF) to examine the improvement of drug delivery. Afterwards, the cells were submitted to low-level laser irradiation to evaluate possible photobiostimulatory effects. Investigations using the immunofluorescence by confocal microscopy and Western blot methods revealed the expression of the neuronal marker β-tubulin III. Fluorescence intensity quantification analysis using INCell Analyzer System for β-tubulin III was used to examine significant differences. The results showed that after low-level laser irradiation exposure, there was a tendency to increase the β-tubulin III expression in all groups, as expected in the photobiostimulation process. Notably, this process induced for irradiation was more pronounced in irradiated nanoforskolin cells (INF) compared to non-irradiated free-forskolin control cells (NFFC). However, there was also an increase in β-tubulin III protein expression in the groups: irradiated nanocontrol cells (INC) compared to non-irradiated free-forskolin control cells (NFF) and after treatment with non-irradiated free-forskolin (NFF) and non-irradiated nanoforskolin (NNFC). We concluded that the methods using low-level laser irradiation and/or nanoparticles showed an up-regulation of neural-protein expression in hMSCs that could be used to facilitate cellular therapy protocols in the near future.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Abramovitch-Gottlib, L., Gross, T., Naveh, D., et al. (2005). Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers in Medical Science, 20(3–4), 138–146.

    Article  PubMed  Google Scholar 

  2. 2.

    Agostinis, P., Berg, K., Cengel, K. A., et al. (2011). Photodynamic therapy of cancer: an update. CA Cancer Journal for Clinicians., 61(4), 250–281.

    Article  Google Scholar 

  3. 3.

    Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Gronthos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26(7), 1787–1795.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Beavo, J. A., & Brunton, L. L. (2002). Cyclic nucleotide research-still exponding after half a century. Nature Reviews, 3(9), 710–718.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Berry, S. E., Andruszkiewicz, P., Chun, J. L., & Hong, J. (2013). Nestin expression in end-stage disease in dystrophin-deficient heart: implications for regeneration from endogenous cardiac stem cells. Stem Cells Translational Medicine, 2(11), 848–861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Bose, S., & Tarafder, S. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomaterialia, 8(4), 1401–1421.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Caddick, J., Kingham, P. J., Gardiner, N. J., Wiberg, M., & Terenghi, G. (2006). Phenotypic and functional characteristic of MSCs differentiated along a Schwann cell lineage. Glia, 54(8), 840–849.

    Article  PubMed  Google Scholar 

  9. 9.

    Caplan, A. I., & Bruder, S. P. (2001). Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Molecular Medicine, 7(6), 259–264.

    Article  CAS  Google Scholar 

  10. 10.

    Carrol, J. D., Milward, M. R., Cooper, P. R., Hadis, M., & Palin, W. M. (2014). Developments in low level light therapy (LLLT) for dentistry. Dental Materials, 30(5), 465–475.

    Article  Google Scholar 

  11. 11.

    Cavalcanti, M. F., Maria, D. A., de Isla, N., et al. (2015). Evaluation of the proliferative effects induced by low-level laser therapy in bone marrow stem cell culture. Photomedicine Laser Surgery, 33(12), 610–616.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Corseli, M., Chen, C. W., Sun, B., Yap, S., Rubin, J. P., & Péault, B. (2012). The tunica adventitia of human arteries and veins as a source of MSCs. Stem Cells Development, 21(8), 1299–1308.

    Article  CAS  Google Scholar 

  13. 13.

    Covas, D. T., Panepucci, R. A., Fontes, A. M., et al. (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Experimental Hematology, 36(5), 642–654.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(11), 2204–2213.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Dezawa, M., Kanno, H., Hoshino, M., et al. (2004). Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. Journal of Clinical Investigation, 113(12), 1701–1710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Dezawa, M., Takahashi, I., Esaki, M., Takano, M., & Sawada, H. (2001). Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. European Journal of Neuroscience, 14(11), 1771–1776.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Ginani, F., Soares, D. M., Barreto, M. P., & Barbosa, C. A. (2015). Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers in Medical Science, 30(8), 2189–2194.

    Article  PubMed  Google Scholar 

  18. 18.

    Jang, S., Cho, H. H., Cho, Y. B., Park, J. S., & Jeong, H. S. (2010). Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. Biomed Central Cell Biology, 11(25), 1–13.

    Google Scholar 

  19. 19.

    Jang, Y. H., Koo, G. B., Kim, J. Y., Kim, Y. S., & Kim, Y. C. (2013). Prolonged Activation of ERK Contributes to the Photorejuvenation Effect in photodynamic therapy in human dermal fibroblasts. Journal of Investigative Dermatology, 133(9), 2265–2275.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Jiang, Y. Q., & Oblinge, M. M. (1992). Differential regulation of βIII and other tubulin genes during peripheral and central neuron development. Journal Cell Science, 103(3), 643–651.

    CAS  Google Scholar 

  21. 21.

    Joo, D., Woo, J. S., Cho, K. H., Han, S. H., Min, T. S., Yang, D. S., Yun, C. H., et al. (2016). Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells. Biochemistry Molecular Biology Reports, 49(4), 220–225.

    CAS  Google Scholar 

  22. 22.

    Karu, T. I., & Kolyakov, S. F. (2005). Exact action spectra for cellular responses relevant to phototherapy. Photomedicine and Laser Surgery, 23(4), 355–361.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Kingham, P. J., Kalbermatten, D. F., Mahay, D., Armstrong, S. J., Wiberg, M., & Terenghi, G. (2007). Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Experimental Neurology, 207(2), 267–274.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Lei, X., Liu, B., Huang, Z., & Wu, J. (2015). A clinical study of photodynamic therapy for chronic skin ulcers in lower limbs infected with Pseudomonas aeruginosa. Archives of Dermatological Research, 307(1), 49–55.

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Lendahl, U., Zimmerman, L. B., & Mckay, R. D. G. (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4), 585–595.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Lipson, R. L., Baldes, E. J., & Olsen, A. M. (1961). Use of a derivative of hematoporphyrin in tumor detection. Journal of the National Cancer Institute, 26(1), 1–11.

    PubMed  CAS  Google Scholar 

  27. 27.

    Loreti, E. H., Pascoal, V. L., Nogueira, B. V., Silva, I. V., & Pedrosa, D. F. (2015). Use of laser therapy in the healing process: A literature review. Photomedicine and Laser Surgery, 33(2), 104–116.

    Article  PubMed  Google Scholar 

  28. 28.

    Ludueña, R. F. (1997). Multiple forms of tubulin: different gene products and covalent modification. International Review of Cytology, 178, 207–275.

    Article  Google Scholar 

  29. 29.

    Maltman, D. J., Hardy, S. A., & Przyborski, S. A. (2011). Role of mesenchymal stem cells in neurogenesis and nervous systems repair. Neurochemistry International, 59(3), 347–356.

    PubMed  CAS  Google Scholar 

  30. 30.

    Mamalis, A. D., Lev-Tov, H., Nguyen, D. H., & Jaqdeo, J. R. (2014). Laser and light-based treatment of Keloids – a review. Journal of the European Academy of Dermatology and Venereology, 28(6), 689–699.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Merino, S., Martín, C., Kostarelos, K., Prato, M., & Vázquez, E. (2015). Nanocomposite Hydrogels: 3D Polymer Nanoparticle Synergies for On-Demand Drug Delivery. American Chemistry Society Nano, 9(5), 4686–4697.

    CAS  Google Scholar 

  32. 32.

    Mester, E., Spiry, T., Szende, B., Spiry, F., & Sacher, A. (1971). Effect of laser rays on wound healing. The American Journal of Surgery, 122(4), 532–535.

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Mignani, S., Kazzouli, E., Bousmina, S., Majoral, M., JP (2013). Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Advanced Drug Delivery Review, 65(10), 1316–1330.

  34. 34.

    Minguell, J. J., Fierro, F. A., Epunã, M. J., Erices, A. A., & Sierralta, W. D. (2005). Nonstimulated human uncommitted mesenchymal stem cell express cell markers of mesenchymal and neural lineages. Stem Cells Development, 14(4), 408–414.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Nadur-Andrade, N., Barbosa, A. M., Carlos, F. P., Lima, C. J., Coqo, J. C., & Zamuner, S. R. (2012). Effects of photobiostimulation on edema and hemorrhage induced by Bothrops moojeni venom. Lasers in Medical Science, 27(1), 65–70.

    Article  PubMed  Google Scholar 

  37. 37.

    Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Review;, 55(3), 329–347.

    Article  CAS  Google Scholar 

  38. 38.

    Passarella, S., & Karu, T. (2014). Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. Journal of Photochemistry and Photobiology, 140, 344–358.

    Article  CAS  Google Scholar 

  39. 39.

    Peplow, P. V., Chung, T. Y., & Baxter, G. D. (2012). Photodynamic modulation of wound healing: a review of human and animal studies. Photomedicine and Laser Surgery, 30(3), 118–148.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair – current views. Stem Cells, 25(11), 2896–2902.

    Article  PubMed  Google Scholar 

  41. 41.

    Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143 – 47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. 42.

    Primo, F. L., Siqueira-Moura, M. P., Simioni, A. R., & Tedesco, A. C. (2007). Preparation, characterization and cytotoxicity assays of chloroaluminum phthalocyanine photosensitizer drug loaded in PLGA-nanocapsules. Drugs Future, 32, 74.

    Google Scholar 

  43. 43.

    Primo, F. L., Reis, M. B. D., Porcionatto, M. A., & Tedesco, A. C. (2011). In Vitro Evaluation of chloroaluminum phthalocyanine nanoemulsion and low-level laser therapy on human skin dermal equivalents and bone marrow mesenchymal stem cells. Current Medicinal Chemistry, 18(22), 3376–3381.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Primo, F. L., Bentley, M. V. L. B., & Tedesco, A. C. (2008). Photophysical studies and in vitro skin permeation/retention of Foscan®/Nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment. Journal of Nanoscience and Nanotechnology, 8(1), 340–347.

    PubMed  CAS  Google Scholar 

  45. 45.

    Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276(5309), 71–74.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Rooney, G. E., Howard, L., O`Brien, T., Windebank, A. J., & Barry, F. P. (2009) Elevation of cAMP in mesenchymal stem cells transiently up regulates neural markers rather than inducing neural differentiation. Stem Cells Development, 18(3), 387 – 98.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164(2), 247–256.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Sartore, R. C., Campos, P. B., Trujillo, C. A., et al. (2011). Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation. PLoS One, 6(6), 1–10.

    Article  CAS  Google Scholar 

  49. 49.

    Seamon, K. B., Padgett, W., & Daly, J. W. (1981) Forskolin: Unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proceedings of the National Academy of Sciences of United States of America, 78(6), 3363–3367.

    Article  CAS  Google Scholar 

  50. 50.

    Sharma, S. K., Kharkwal, G. B., & Sago, M. (2011). Dose response effects of 810 nm laser light on mouse primary cortical neurons. Laser Surgery Medicine, 43(8), 851–859.

    Article  Google Scholar 

  51. 51.

    Stein, A., Benayahu, D., Maltz, L., & Oron, U. (2005). Low-Level Laser Irradiation Promotes Proliferation and Differentiation of Human Osteoblasts in Vitro. Photomedicine and Laser Surgery, 23(2), 161–166.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Stein, E., Koehn, J., Sutter, W., et al. (2009). Phenothiazine chloride and soft laser light have a biostimulatory effect on human osteoblastic cells. Photomedicine and Laser Surgery, 27(1), 71–77.

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Tondreau, T., Lagneaux, L., Dejeneffe, M., et al. (2004). Bone-marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation, 72(7), 319–326.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Wong-Riley, M. T., Liang, H. L., Eells, J. T., et al. (2005). Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. The Journal of Biological Chemistry, 280(6), 4761–4771.

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Woodbury, D., Schwarz, E. J., Prockop, D. J., & Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Wu, Q., Xuan, W., Ando, T., et al. (2012). Low-level laser therapy for closed-head traumatic brain injury in mice: effect of different wavelengths. Lasers in Surgery and Medicine, 44(3), 218–226.

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Yu, W., Naim, J. O., & Lanzafame, R. J. (1994). The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochemistry and Photobiology, 59(2), 167–170.

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Zancanela, D. C., Primo, F. L., Rosa, A. L., Ciacanglini, P., & Tedesco, A. C. (2011). The Effect of Photosensitizer Drugs and Light Stimulation on Osteoblast Growth. Photomedicine and Laser Surgery, 29(10), 699–705.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Zhang, G., Zeng, X., & Li, P. (2013). Nanomaterials in cancer-therapy drug delivery systems. Journal of Biomedical Nanotechnology, 9(5), 741–750.

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Zhang, L., & Webster, T. J. (2009). Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nanotoday, 4(1), 66–80.

    Article  CAS  Google Scholar 

  61. 61.

    Zhang, Y., Song, S. P., Fong, C. C., Tsang, C. H., Yang, Z., & Yang, M. (2003). cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. Journal of Investigative Dermatology, 120(5), 849–857.

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002) Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13(12), 4279–4295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Hospital Amaral de Carvalho (Jau, São Paulo) and are especially grateful to Drs Antônio Cesarino Mota and Vergílio Rensi Colturato for providing bone marrow samples from donors as well as Nayara Rezende for help with the nanoforskolin and Sandra Navarro Brescian for artwork. I want to thank Fernanda Udinal for language advice and Priscilla Carnavale Gomes Ferreira for reviewing the manuscript. Valéria Ferreira-Silva is grateful for a postdoctoral fellowship from Coordenacão de Aperfeicoamento de Pessoal de Nível Superior (CAPES). This work was supported by Financiadora de Estudos e Projetos (FINEP 01.10.0758.01), CEFAP-USP (São Paulo), Instituto Nacional de Ciência e Tecnologia, Célula-Tronco e Terapia Celular (INCTC), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP# 2013/50181-1), Brazil.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio C. Tedesco.

Ethics declarations

Competing Interests

The authors have no potential conflicts of interest to report.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Silva, V., Primo, F.L., Baqui, M.M. et al. Beneficial Role of Low-Intensity Laser Irradiation on Neural β-tubulin III Protein Expression in Human Bone Marrow Multipotent Mesenchymal Stromal Cells. Stem Cell Rev and Rep 14, 585–598 (2018). https://doi.org/10.1007/s12015-017-9796-3

Download citation

Keywords

  • Low-intensity laser irradiation
  • Nanotechnology
  • Forskolin
  • Nano-drug delivery
  • β-Tubulin III
  • Multipotent mesenchymal stromal cells