Skip to main content
Log in

Involvement of TLR3-Dependent PGES Expression in Immunosuppression by Human Bone Marrow Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Human mesenchymal stem cells (MSCs) are known for their prostaglandin E2 (PGE2)-mediated immunosuppressive function but the precise molecular mechanisms underlying PGE2 biosynthesis during inflammation have not been completely elucidated. In this study, we have investigated the involvement of PGE2 pathway members in PGE2 production by bone marrow (BM)-MSCs in response to inflammatory stimuli, and their role in immunosuppression mediated by BM-MSCs. We found that IFN-γ and TNF-α increased cyclooxygenase (COX)-2 expression but not that of prostaglandin E synthase (PGES), or PGE2 production. On the other hand, the toll like receptor 3 (TLR3) stimulant poly(I:C) increased expression of both COX-2 and PGES, resulting in a significant increase in PGE2 levels. This effect was reversed upon COX-2 inhibition with indomethacin or PGES downregulation by siRNA. Reduced PGE2 levels decreased MSC’s capacity to inhibit hPBMC proliferation. In addition, administration of MSCs with inhibited PGES expression into mice with graft-versus-host disease (GVHD) did not reduce mortality. In summary, the present study reveals that upregulation of PGES via TLR3 is critical for BM-MSCs-mediated immunosuppression by PGE2 secretion via the COX-2/PGE2 pathway. These results provide a basis for understanding the molecular mechanisms underlying the PGE2-mediated immunosuppressive properties of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ringden, O., Uzunel, M., Rasmusson, I., Remberger, M., Sundberg, B., Lonnies, H., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397.

    Article  PubMed  Google Scholar 

  2. Ruan, G. P., Yao, X., Liu, J. F., He, J., Li, Z. A., Yang, J. Y., et al. (2016). Establishing a tree shrew model of systemic lupus erythematosus and cell transplantation treatment. Stem Cell Research & Therapy, 7(1), 121.

    Article  Google Scholar 

  3. Abdi, R., Fiorina, P., Adra, C., Atkinson, N., M., & Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 57(7), 1759–1767.

  4. Parekkadan, B., Fletcher, A. L., Li, M., Tjota, M. Y., Bellemare-Pelletier, A., Milwid, J. M., et al. (2012). Aire controls mesenchymal stem cell-mediated suppression in chronic colitis. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(1), 178–186.

    Article  CAS  Google Scholar 

  5. Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107(1), 367–372.

    Article  CAS  PubMed  Google Scholar 

  6. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.

    Article  PubMed  Google Scholar 

  7. English, K., Ryan, J. M., Tobin, L., Murphy, M. J., Barry, F. P., & Mahon, B. P. (2009). Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4 + CD25(High) forkhead box P3 + regulatory T cells. Clininical and Experimental Immunology, 156(1), 149–160.

    Article  CAS  Google Scholar 

  8. Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  9. Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113(26), 6576–6583.

    Article  CAS  PubMed  Google Scholar 

  10. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  11. Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103(12), 4619–4621.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, H., Lu, K., MacAry, P. A., Wong, K. L., Heng, A., Cao, T., et al. (2012). Soluble molecules are key in maintaining the immunomodulatory activity of murine mesenchymal stromal cells. Journal of Cell Science, 125(Pt 1), 200–208.

    Article  CAS  PubMed  Google Scholar 

  13. Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109(1), 228–234.

    Article  CAS  PubMed  Google Scholar 

  14. Bian, L., Guo, Z. K., Wang, H. X., Wang, J. S., Wang, H., Li, Q. F., et al. (2009). In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In vivo, 23(1), 21–27.

    CAS  PubMed  Google Scholar 

  15. Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.

    Article  CAS  PubMed  Google Scholar 

  16. Park, J. Y., Pillinger, M. H., & Abramson, S. B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clinical Immunology, 119(3), 229–240.

    Article  CAS  PubMed  Google Scholar 

  17. Hegyi, B., Kudlik, G., Monostori, E., & Uher, F. (2012). Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells. Biochemical and Biophysical Research Communications, 419(2), 215–220.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, K., Wang, D., Du, W. T., Han, Z. B., Ren, H., et al. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology, 135(3), 448–458.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, B. C., Kim, H. S., Shin, T. H., Kang, I., Lee, J. Y., Kim, J. J., et al. (2016). PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Scientific Reports, 6, 26298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hermankova, B., Zajicova, A., Javorkova, E., Chudickova, M., Trosan, P., Hajkova, M., et al. (2016). Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-gamma-treated mesenchymal stem cells. Immunobiology, 221(2), 129–136.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, K. R., Lee, J. Y., Kim, H. S., Hong, I. S., Choi, S. W., Seo, Y., et al. (2014). A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS One, 9(8), e102426.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Najar, M., Raicevic, G., Boufker, H. I., Fayyad Kazan, H., De Bruyn, C., Meuleman, N., et al. (2010). Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton’s Jelly and bone marrow sources. Cellular Immunology, 264(2), 171–179.

    Article  CAS  PubMed  Google Scholar 

  23. Tian, Y., Wang, J., Wang, W., Ding, Y., Sun, Z., Zhang, Q., et al. (2016). Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Research & Therapy, 7(1), 157.

    Article  Google Scholar 

  24. Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuzé-Vourc’h, N., Zeng, G., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4 + T cells. Journal of Immunology, 175(3), 1483–1490.

    Article  CAS  Google Scholar 

  25. Wang, Y., Han, Z. B., Song, Y. P., & Han, Z. C. (2012). Safety of mesenchymal stem cells for clinical application. Stem Cells International, 2012, 652034.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hill, G. R., Crawford, J. M., Cooke, K. R., Brinson, Y. S., Pan, L., & Ferrara, J. L. (1997). Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood, 90(8), 3204–3213.

    CAS  PubMed  Google Scholar 

  27. Markey, K. A., MacDonald, K. P., & Hill, G. R. (2014). The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood, 124(3), 354–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dalrymple, N. A., & Mackow, E. R. (2014). Virus interactions with endothelial cell receptors: implications for viral pathogenesis. Current Opinion in Virology, 7, 134–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., et al. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398.

    Article  CAS  PubMed  Google Scholar 

  30. Phinney, D. G. (2012). Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. Journal of Cellular Biochemistry, 113(9), 2806–2812.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, D. S., Lee, M. W., Yoo, K. H., Lee, T. H., Kim, H. J., Jang, I. K., et al. (2014). Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density. PLoS One, 9(1), e83363.

Download references

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea [Grant number: HI14C3484 and HI15C2963].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung Woo Lee or Keon Hee Yoo.

Ethics declarations

Disclosure statement

The authors report no potential conflicts of interest.

Research involving Human Participants and Animals

The Institutional Review Board (2012-11-003) of the Samsung Medical Center approved this study and all human samples were obtained with informed consent. NOD/SCID mice purchased from the Jackson Laboratories were used in this study, which was approved by the Institutional Animal Care and Use Committee of Samsung Medical Center, certified by AAALAC international (2001).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 188 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.S., Lee, W.H., Lee, M.W. et al. Involvement of TLR3-Dependent PGES Expression in Immunosuppression by Human Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev and Rep 14, 286–293 (2018). https://doi.org/10.1007/s12015-017-9793-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9793-6

Keywords

Navigation