Stem Cell Reviews and Reports

, Volume 14, Issue 2, pp 286–293 | Cite as

Involvement of TLR3-Dependent PGES Expression in Immunosuppression by Human Bone Marrow Mesenchymal Stem Cells

  • Dae Seong Kim
  • Whi Hyeong Lee
  • Myoung Woo Lee
  • Hyun Jin Park
  • In Keun Jang
  • Ji Won Lee
  • Ki Woong Sung
  • Hong Hoe Koo
  • Keon Hee Yoo


Human mesenchymal stem cells (MSCs) are known for their prostaglandin E2 (PGE2)-mediated immunosuppressive function but the precise molecular mechanisms underlying PGE2 biosynthesis during inflammation have not been completely elucidated. In this study, we have investigated the involvement of PGE2 pathway members in PGE2 production by bone marrow (BM)-MSCs in response to inflammatory stimuli, and their role in immunosuppression mediated by BM-MSCs. We found that IFN-γ and TNF-α increased cyclooxygenase (COX)-2 expression but not that of prostaglandin E synthase (PGES), or PGE2 production. On the other hand, the toll like receptor 3 (TLR3) stimulant poly(I:C) increased expression of both COX-2 and PGES, resulting in a significant increase in PGE2 levels. This effect was reversed upon COX-2 inhibition with indomethacin or PGES downregulation by siRNA. Reduced PGE2 levels decreased MSC’s capacity to inhibit hPBMC proliferation. In addition, administration of MSCs with inhibited PGES expression into mice with graft-versus-host disease (GVHD) did not reduce mortality. In summary, the present study reveals that upregulation of PGES via TLR3 is critical for BM-MSCs-mediated immunosuppression by PGE2 secretion via the COX-2/PGE2 pathway. These results provide a basis for understanding the molecular mechanisms underlying the PGE2-mediated immunosuppressive properties of MSCs.


Mesenchymal stem cell Cyclooxygenase 2 Prostaglandin E synthase Prostaglandin E2 Immunosuppression 



This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea [Grant number: HI14C3484 and HI15C2963].

Compliance with Ethical Standards

Disclosure statement

The authors report no potential conflicts of interest.

Research involving Human Participants and Animals

The Institutional Review Board (2012-11-003) of the Samsung Medical Center approved this study and all human samples were obtained with informed consent. NOD/SCID mice purchased from the Jackson Laboratories were used in this study, which was approved by the Institutional Animal Care and Use Committee of Samsung Medical Center, certified by AAALAC international (2001).

Supplementary material

12015_2017_9793_MOESM1_ESM.docx (188 kb)
Supplementary material 1 (DOCX 188 KB)


  1. 1.
    Ringden, O., Uzunel, M., Rasmusson, I., Remberger, M., Sundberg, B., Lonnies, H., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81(10), 1390–1397.CrossRefPubMedGoogle Scholar
  2. 2.
    Ruan, G. P., Yao, X., Liu, J. F., He, J., Li, Z. A., Yang, J. Y., et al. (2016). Establishing a tree shrew model of systemic lupus erythematosus and cell transplantation treatment. Stem Cell Research & Therapy, 7(1), 121.CrossRefGoogle Scholar
  3. 3.
    Abdi, R., Fiorina, P., Adra, C., Atkinson, N., M., & Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 57(7), 1759–1767.Google Scholar
  4. 4.
    Parekkadan, B., Fletcher, A. L., Li, M., Tjota, M. Y., Bellemare-Pelletier, A., Milwid, J. M., et al. (2012). Aire controls mesenchymal stem cell-mediated suppression in chronic colitis. Molecular Therapy: The Journal of the American Society of Gene Therapy, 20(1), 178–186.CrossRefGoogle Scholar
  5. 5.
    Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107(1), 367–372.CrossRefPubMedGoogle Scholar
  6. 6.
    Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.CrossRefPubMedGoogle Scholar
  7. 7.
    English, K., Ryan, J. M., Tobin, L., Murphy, M. J., Barry, F. P., & Mahon, B. P. (2009). Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4 + CD25(High) forkhead box P3 + regulatory T cells. Clininical and Experimental Immunology, 156(1), 149–160.CrossRefGoogle Scholar
  8. 8.
    Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327–1333.CrossRefPubMedGoogle Scholar
  9. 9.
    Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113(26), 6576–6583.CrossRefPubMedGoogle Scholar
  10. 10.
    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.CrossRefPubMedGoogle Scholar
  11. 11.
    Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103(12), 4619–4621.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu, H., Lu, K., MacAry, P. A., Wong, K. L., Heng, A., Cao, T., et al. (2012). Soluble molecules are key in maintaining the immunomodulatory activity of murine mesenchymal stromal cells. Journal of Cell Science, 125(Pt 1), 200–208.CrossRefPubMedGoogle Scholar
  13. 13.
    Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109(1), 228–234.CrossRefPubMedGoogle Scholar
  14. 14.
    Bian, L., Guo, Z. K., Wang, H. X., Wang, J. S., Wang, H., Li, Q. F., et al. (2009). In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In vivo, 23(1), 21–27.PubMedGoogle Scholar
  15. 15.
    Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.CrossRefPubMedGoogle Scholar
  16. 16.
    Park, J. Y., Pillinger, M. H., & Abramson, S. B. (2006). Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases. Clinical Immunology, 119(3), 229–240.CrossRefPubMedGoogle Scholar
  17. 17.
    Hegyi, B., Kudlik, G., Monostori, E., & Uher, F. (2012). Activated T-cells and pro-inflammatory cytokines differentially regulate prostaglandin E2 secretion by mesenchymal stem cells. Biochemical and Biophysical Research Communications, 419(2), 215–220.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen, K., Wang, D., Du, W. T., Han, Z. B., Ren, H., et al. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology, 135(3), 448–458.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee, B. C., Kim, H. S., Shin, T. H., Kang, I., Lee, J. Y., Kim, J. J., et al. (2016). PGE2 maintains self-renewal of human adult stem cells via EP2-mediated autocrine signaling and its production is regulated by cell-to-cell contact. Scientific Reports, 6, 26298.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hermankova, B., Zajicova, A., Javorkova, E., Chudickova, M., Trosan, P., Hajkova, M., et al. (2016). Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-gamma-treated mesenchymal stem cells. Immunobiology, 221(2), 129–136.CrossRefPubMedGoogle Scholar
  21. 21.
    Yu, K. R., Lee, J. Y., Kim, H. S., Hong, I. S., Choi, S. W., Seo, Y., et al. (2014). A p38 MAPK-mediated alteration of COX-2/PGE2 regulates immunomodulatory properties in human mesenchymal stem cell aging. PLoS One, 9(8), e102426.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Najar, M., Raicevic, G., Boufker, H. I., Fayyad Kazan, H., De Bruyn, C., Meuleman, N., et al. (2010). Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton’s Jelly and bone marrow sources. Cellular Immunology, 264(2), 171–179.CrossRefPubMedGoogle Scholar
  23. 23.
    Tian, Y., Wang, J., Wang, W., Ding, Y., Sun, Z., Zhang, Q., et al. (2016). Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Research & Therapy, 7(1), 157.CrossRefGoogle Scholar
  24. 24.
    Baratelli, F., Lin, Y., Zhu, L., Yang, S. C., Heuzé-Vourc’h, N., Zeng, G., et al. (2005). Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4 + T cells. Journal of Immunology, 175(3), 1483–1490.CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Han, Z. B., Song, Y. P., & Han, Z. C. (2012). Safety of mesenchymal stem cells for clinical application. Stem Cells International, 2012, 652034.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hill, G. R., Crawford, J. M., Cooke, K. R., Brinson, Y. S., Pan, L., & Ferrara, J. L. (1997). Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood, 90(8), 3204–3213.PubMedGoogle Scholar
  27. 27.
    Markey, K. A., MacDonald, K. P., & Hill, G. R. (2014). The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood, 124(3), 354–362.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dalrymple, N. A., & Mackow, E. R. (2014). Virus interactions with endothelial cell receptors: implications for viral pathogenesis. Current Opinion in Virology, 7, 134–140.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., et al. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398.CrossRefPubMedGoogle Scholar
  30. 30.
    Phinney, D. G. (2012). Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. Journal of Cellular Biochemistry, 113(9), 2806–2812.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim, D. S., Lee, M. W., Yoo, K. H., Lee, T. H., Kim, H. J., Jang, I. K., et al. (2014). Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density. PLoS One, 9(1), e83363.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Pediatrics, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
  2. 2.Stem Cell & Regenerative Medicine InstituteSamsung Medical CenterSeoulSouth Korea
  3. 3.Regeneration Medicine Research Institute, Stemlab Inc. TechnoComplexKorea UniversitySeoulSouth Korea
  4. 4.Biomedical Research InstituteLIFELIVER Co., LTD.YonginSouth Korea
  5. 5.Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoulSouth Korea
  6. 6.Department of Medical Device Management and Research, SAIHSTSungkyunkwan UniversitySeoulSouth Korea

Personalised recommendations