Stem Cell Reviews and Reports

, Volume 14, Issue 2, pp 200–212 | Cite as

Dual Contribution of Mesenchymal Stem Cells Employed for Tissue Engineering of Peripheral Nerves: Trophic Activity and Differentiation into Connective-Tissue Cells

  • F. Evaristo-Mendonça
  • A. Carrier-Ruiz
  • R. de Siqueira-Santos
  • R. M. P. Campos
  • B. Rangel
  • T. H. Kasai-Brunswick
  • V. T. Ribeiro-Resende


Adult peripheral nerves in vertebrates can regrow their axons and re-establish function after crush lesion. However, when there is extensive loss of a nerve segment, due to an accident or compressive damage caused by tumors, regeneration is strongly impaired. In order to overcome this problem, bioengineering strategies have been employed, using biomaterials formed by key cell types combined with biodegradable polymers. Many of these strategies are successful, and regenerated nerve tissue can be observed 12 weeks after the implantation. Mesenchymal stem cells (MSCs) are one of the key cell types and the main stem-cell population experimentally employed for cell therapy and tissue engineering of peripheral nerves. The ability of these cells to release a range of different small molecules, such as neurotrophins, growth factors and interleukins, has been widely described and is a feasible explanation for the improvement of nerve regeneration. Moreover, the multipotent capacity of MSCs has been very often challenged with demonstrations of pluripotency, which includes differentiation into any neural cell type. In this study, we generated a biomaterial formed by EGFP-MSCs, constitutively covering microstructured filaments made of poly-ε-caprolactone. This biomaterial was implanted in the sciatic nerve of adult rats, replacing a 12-mm segment, inside a silicon tube. Our results showed that six weeks after implantation, the MSCs had differentiated into connective-tissue cells, but not into neural crest-derived cells such as Schwann cells. Together, present findings demonstrated that MSCs can contribute to nerve-tissue regeneration, producing trophic factors and differentiating into fibroblasts, endothelial and smooth-muscle cells, which compose the connective tissue.


Mesenchymal stem cells PCL filaments Tissue engineering Nerve regeneration Peripheral nervous system 



alpha smooth muscle actin


analysis of variance


brain-derived neurotrophic factor, CD-90, 45, 34, 29 and 31, cluster of differentiation 90, 45, 34, 29 and 31


Dulbecco’s modified Eagle medium


dorsal root ganglia;


endothelial cells


ethylenediaminetetraacetic acid


enhanced green fluorescent protein


human adipose-derived stromal cells


mesenchymal stem cells




nerve growth factor


phosphate buffered saline






peripheral nervous system


Schwann cells


vascular endothelial growth factor



We thank Dr. Burkhard Schlosshauer from the NMI Reutlingen at Tübingen University for kindly donating the PCL filaments. This study was supported by grants and fellowships from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) to V.T.R.R., F.E.M., and A.C.R.; and the Instituto Nacional de Neurociências Translacional (INNT) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to V.T.R.R.

Authors’ contributions.

FEM: performed cell and embryonic cultures, generation of in-vivo experimental model, histology procedures, fluorescent imaging, statistical analysis, interpretation of experimental results, and manuscript development and writing. ACR: Performed histology, confocal microscopy, culture procedures, interpretation of experimental results and development and writing of the manuscript. RSS: Established DRG explants culture system, contributed to the interpretation of experimental results, and manuscript development and writing. VTRR: Director of the project. Contributed to the general administration, cell culture, generation of in-vivo experimental model, histology and staining procedures, fluorescence and electron microscopy, statistical analysis, interpretation of experimental results, and manuscript development and writing. All authors read and approved the manuscript.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12015_2017_9786_MOESM1_ESM.tif (6.2 mb)
Supplementary material 1 (TIF 6307 KB)


  1. 1.
    Chen, Z. L., Yu, W. M., & Strickland, S. (2007). Peripheral Regeneration. Annual Review of Neuroscience, 30, 209 – 33.CrossRefPubMedGoogle Scholar
  2. 2.
    Geuna, S., Raimondo, S., Ronchi, G., Di Scipio, F., Tos, P., Czaja, K., & Fornaro, M. (2009). Chapter 3: Histology of the peripheral nerve and changes occurring during nerve regeneration. International Review of Neurobiology, 87, 27–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Scheib, J., & Höke, A. (2013). Advances in peripheral nerve regeneration. Nature Reviews. Neurology, 9, 668 – 76.CrossRefPubMedGoogle Scholar
  4. 4.
    Daly, W., Yao, L., Zeugolis, D., Windebank, A., & Pandit, A. (2012). A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of the Royal Society, Interface, 9, 202 – 21.CrossRefPubMedGoogle Scholar
  5. 5.
    Geuna, S., Raimondo, S., Fregnan, F., Haastert-Talini, K., & Grothe, C. (2016). In vitro models for peripheral nerve regeneration. European Journal of Neurology, 43, 287 – 96.Google Scholar
  6. 6.
    Vargas, M. E., & Barres, B. A. (2007). Why is Wallerian degeneration in the CNS so slow? Annual Review of Neuroscience, 30, 153 – 79.CrossRefPubMedGoogle Scholar
  7. 7.
    Conforti, L., Gilley, J., & Coleman, M. P. (2014). Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nature Reviews Neurology, 15, 394–409.CrossRefGoogle Scholar
  8. 8.
    Caplan, A. Why are MSCs therapeutic? New data: new insight. The Journal of Pathology. 2009;217:318 – 24.Google Scholar
  9. 9.
    Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28, 585 – 96.PubMedGoogle Scholar
  10. 10.
    Kern, S., Eichler, H., Stoeve, J., Klüter, H., & Bieback, K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294 – 301.CrossRefPubMedGoogle Scholar
  11. 11.
    Ribeiro-Resende, V. T., Pimentel-Coelho, P. M., Mesentier-Louro, L. A., Mendez, R. M., Mello-Silva, J. P., Cabral-da-Silva, M. C., de Mello, F. G., de Melo Reis, R. A., & Mendez-Otero, R. (2009). Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience, 159, 540–549.CrossRefPubMedGoogle Scholar
  12. 12.
    Moodley, Y., Vaghjiani, V., Chan, J., Baltic, S., Ryan, M., Tchongue, J., Samuel, C. S., Murthi, P., Parolini, O., & Manuelpillai, U. (2013). Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS ONE, 8(8), e69299.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wakao, S., Hayashi, T., Kitada, M., Kohama, M., Matsue, D., Teramoto, N., Ose, T., Itokazu, Y., Koshino, K., Watabe, H., Iida, H., Takamoto, T., Tabata, Y., & Dezawa, M. (2010). Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Experimental Neurology, 223, 537 – 47.CrossRefPubMedGoogle Scholar
  14. 14.
    Pereira-Lopes, F. R., Frattini, F., Marques, S. A., Almeida, F. M., de Moura Campos, L. C., Langone, F., Lora, S., Borojevic, R., & Martinez, A. M. Transplantation of bone-marrow-derived cells into a nerve guide resulted in transdifferentiation into Schwann cells and effective regeneration of transected mouse sciatic nerve. Micron 2010;41:783–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Keilhoff, G., Goihl, A., Stang, F., Wolf, G., & Fansa, H. (2006). Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Engineering, 12, 1451–1465.CrossRefPubMedGoogle Scholar
  16. 16.
    Yuen, T. J., Silbereis, J. C., Griveau, A., Chang, S. M., Daneman, R., Fancy, S. P., Zahed, H., Maltepe, E., & Rowitch, D. H. (2014). Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 158, 383 – 96.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Widenfalk, J., Lipson, A., Jubran, M., Hofstetter, C., Ebendal, T., Cao, Y., & Olson, L. (2003). Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience, 120, 951 – 60.CrossRefPubMedGoogle Scholar
  18. 18.
    Storkebaum, E., Lambrechts, D., & Carmeliet, P. (2004). VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays, 26, 943 – 54.CrossRefPubMedGoogle Scholar
  19. 19.
    Meyer, C., Stenberg, L., Gonzalez-Perez, F., Wrobel, S., Ronchi, G., Udina, E., Suganuma, S., Geuna, S., Navarro, X., Dahlin, L. B., Grothe, C., & Haastert-Talini, K. (2015). Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials, 76, 33–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Roam, J. L., Yan, Y., Nguyen, P. K., Kinstlinger, I. S., Leuchter, M. K., Hunter, D. A., Wood, M. D., & Elbert, D. L. (2015). A modular, plasmin-sensitive, clickable poly(ethylene glycol)-heparin-laminin microsphere system for establishing growth factor gradients in nerve guidance conduits. Biomaterials, 72, 112 – 24.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Georgiou, M., Golding, J. P., Loughlin, A. J., Kingham, P. J., & Phillips, J. B. (2015). Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials, 37, 242 – 51.CrossRefPubMedGoogle Scholar
  22. 22.
    Hsu, S. H., Kuo, W. C., Chen, Y. T., Yen, C. T., Chen, Y. F., Chen, K. S., Huang, W. C., & Cheng, H. (2013). New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomaterialia, 9, 6606–6615.CrossRefPubMedGoogle Scholar
  23. 23.
    Nichterwitz, S., Hoffmann, N., Hajosch, R., Oberhoffner, S., & Schlosshauer, B. (2010). Bioengineered glial strands for nerve regeneration. Neuroscience Letters, 484, 118 – 22.CrossRefPubMedGoogle Scholar
  24. 24.
    Li, W. J., Tuli, R., Huang, X., Laquerriere, P., & Tuan, R. S. (2005). Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 26, 5158–5166.CrossRefPubMedGoogle Scholar
  25. 25.
    Ribeiro-Resende, V. T., Koenig, B., Nichterwitz, S., Oberhoffner, S., & Schlosshauer, B. (2009). Strategies for inducing the formation of bands of Büngner in peripheral nerve regeneration. Biomaterials, 30, 5251–5259.CrossRefPubMedGoogle Scholar
  26. 26.
    Carrier-Ruiz, A., Evaristo-Mendonça, F., Mendez-Otero, R., & Ribeiro-Resende, V. T. (2015). Biological behavior of mesenchymal stem cells on poly-ε-caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves. Stem Cell Research & Therapy, 6, 128.CrossRefGoogle Scholar
  27. 27.
    Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., Bae, Y. C., & Jung, J. S. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem, 14, 311 – 24.CrossRefPubMedGoogle Scholar
  28. 28.
    Ribeiro-Resende, V. T., Carrier-Ruiz, A., Lemes, R. M., Reis, R. A., & Mendez-Otero, R. (2012). Bone marrow-derived fibroblast growth factor-2 induces glial cell proliferation in the regenerating peripheral nervous system. Molecular Neurodegeneration, 7, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Silva, N. A., Moreira, J., Ribeiro-Samy, S., & Gomes, E. D. (2013). Modulation of bone marrow mesenchymal stem cell secretome by ECM-like hydrogels. Biochimie, 95, 2314–2319.CrossRefPubMedGoogle Scholar
  30. 30.
    Keating, A. (2012). Mesenchymal stromal cells: new directions. Cell Stem Cell, 10, 709 – 16.CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., & Verfaillie, C. M. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41 – 9.CrossRefPubMedGoogle Scholar
  32. 32.
    Muñoz-Elias, G., Marcus, A. J., Coyne, T. M., Woodbury, D., & Black, I. B. (2004). Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. Journal of Neuroscience, 24, 4585–4595.Google Scholar
  33. 33.
    Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D. M., Nakano, Y., Meyer, E. M., Morel, L., & Petersen, B. E. (2002). Scott EW Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 416, 542–545.CrossRefPubMedGoogle Scholar
  34. 34.
    Ying, Q. L., Nichols, J., Evans, E. P., & Smith, A. G. (2002). Changing potency by spontaneous fusion. Nature, 416, 545–548.CrossRefPubMedGoogle Scholar
  35. 35.
    Zeng, X., Qiu, X. C., Ma, Y. H., Duan, J. J., Chen, Y. F., Gu, H. Y., Wang, J. M., Ling, E. A., Wu, J. L., Wu, W., & Zeng, Y. S. (2015). Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials, 53, 184–201.CrossRefPubMedGoogle Scholar
  36. 36.
    Liu, Y., Chen, J., Liu, W., Lu, X., Liu, Z., Zhao, X., Li, G., & Chen, Z. (2016). A Modified Approach to Inducing Bone Marrow Stromal Cells to Differentiate into Cells with Mature Schwann Cell Phenotypes. Stem Cells Dev, 25, 347 – 59.CrossRefPubMedGoogle Scholar
  37. 37.
    Dimarino, A. M., Caplan, A. I., & Bonfield, T. L. (2013). Mesenchymal stem cells in tissue repair. Frontiers in Immunology, 4, 201.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Carmeliet, P., & Tessier-Lavigne, M. (2005). Common mechanisms of nerve and blood vessel wiring. Nature, 436, 193–200.CrossRefPubMedGoogle Scholar
  39. 39.
    Mukouyama, Y. S., Gerber, H. P., Ferrara, N., Gu, C., & Anderson, D. J. (2005). Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development, 132, 941 – 52.CrossRefPubMedGoogle Scholar
  40. 40.
    Cattin, A. L., Burden, J. J., Van Emmenis, L., Mackenzie, F. E., Hoving, J. J., Garcia Calavia, N., Guo, Y., McLaughlin, M., Rosenberg, L. H., Quereda, V., Jamecna, D., Napoli, I., Parrinello, S., Enver, T., Ruhrberg, C., & Lloyd, A. C. (2015). Macrophage-Induced Blood Vessels Guide Schwann Cell-Mediated Regeneration of Peripheral Nerves. Cell, 162, 1127–1139.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cordeiro, I. R., Lopes, D. V., Abreu, J. G., Carneiro, K., Rossi, M. I., & Brito, J. M. (2015). Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells. Biology Open, 4, 1180–1193.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Instituto de Biofísica Carlos Chagas Filho, Laboratório de NeuroquímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Neurophysiology, Graduate School of MedicineThe University of TokyoTokyoJapan
  3. 3.Centro Nacional de Biologia Estrutural e Bioimagem- CENABIOCidade UniversitáriaRio de JaneiroBrazil
  4. 4.Núcleo Multidisciplinar de Pesquisa em Biologia - Numpex-BioUniversidade Federal do Rio de JaneiroDuque de CaxiasBrazil
  5. 5.Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas FilhoUFRJRio de JaneiroBrazil

Personalised recommendations