Noncoding RNAs in the Regulation of Pluripotency and Reprogramming

Abstract

Pluripotent stem cells have great potential for developmental biology and regenerative medicine. Embryonic stem cells, which are obtained from blastocysts, and induced pluripotent stem cells, which are generated by the reprogramming of somatic cells, are two main types of pluripotent cells. It is important to understand the regulatory network that controls the pluripotency state and reprogramming process. Various types of noncoding RNAs (ncRNAs) have emerged as substantial components of regulatory networks. The most studied class of ncRNAs in the context of pluripotency and reprogramming is microRNAs (miRNAs). In addition to canonical microRNAs, other types of small RNAs with miRNA-like function are expressed in PSCs. Another class of ncRNAs, long ncRNAs, are also involved in pluripotency and reprogramming regulation. Thousands of ncRNAs have been annotated to date, and a significant number of the molecules do not have known function. In this review, we briefly summarized recent advances in this field and described existing genome-editing approaches to study ncRNA functions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Comings, D. E. (1972). The structure and function of chromatin. Advances in Human Genetics, 3, 237–431.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symposia in Biology, 23, 366–370.

    CAS  PubMed  Google Scholar 

  3. 3.

    Djebali, S., Davis, C. A., Merkel, A., et al. (2012). Landscape of transcription in human cells. Nature, 489, 101–108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Kung, J. T., Colognori, D., & Lee, J. T. (2013). Long noncoding RNAs: past, present, and future. Genetics, 193, 651–669.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Mattick, J. S., & Makunin, I. V. (2005). Small regulatory RNAs in mammals. Human molecular genetics, 14 Spec No 1, R121-132.

  6. 6.

    Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P., & Blelloch, R. (2008). Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes & Development, 22, 2773–2785.

    CAS  Article  Google Scholar 

  7. 7.

    Aravin, A. A., Hannon, G. J., & Brennecke, J. (2007). The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science, 318, 761–764.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Gregory, R. I., Yan, K. P., Amuthan, G., et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature, 432, 235–240.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10, 126–139.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11, 228–234.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Kanellopoulou, C., Muljo, S. A., Kung, A. L., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & Development, 19, 489–501.

    CAS  Article  Google Scholar 

  15. 15.

    Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., & Hannon, G. J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 12135–12140.

  16. 16.

    Qi, J., Yu, J. Y., Shcherbata, H. R., et al. (2009). microRNAs regulate human embryonic stem cell division. Cell cycle (Georgetown, Tex.), 8, 3729–3741.

    CAS  Article  Google Scholar 

  17. 17.

    Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40, 1478–1483.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Calabrese, J. M., Seila, A. C., Yeo, G. W., & Sharp, P. A. (2007). RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 18097–18102.

  19. 19.

    Leung, A. K., Young, A. G., Bhutkar, A., et al. (2011). Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nature Structural & Molecular Biology, 18, 237–244.

    CAS  Article  Google Scholar 

  20. 20.

    Marson, A., Levine, S. S., Cole, M. F., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134, 521–533.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137, 647–658.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Jouneau, A., Ciaudo, C., Sismeiro, O., et al. (2012). Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. Rna, 18, 253–264.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Tesar, P. J., Chenoweth, J. G., Brook, F. A., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Bar, M., Wyman, S. K., Fritz, B. R., et al. (2008). MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem cells (Dayton, Ohio), 26, 2496–2505.

    CAS  Article  Google Scholar 

  25. 25.

    Laurent, L. C., Chen, J., Ulitsky, I., et al. (2008). Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem cells (Dayton, Ohio), 26, 1506–1516.

    CAS  Article  Google Scholar 

  26. 26.

    Lin, S., Cheung, W. K., Chen, S., et al. (2010). Computational identification and characterization of primate-specific microRNAs in human genome. Computational Biology and Chemistry, 34, 232–241.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Nguyen, P. N., Huang, C. J., Sugii, S., Cheong, S. K., & Choo, K. B. (2017). Selective activation of miRNAs of the primate-specific chromosome 19 miRNA cluster (C19MC) in cancer and stem cells and possible contribution to regulation of apoptosis. Journal of Biomedical Science, 24, 20.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Cloonan, N. (2015). Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 37, 379–388.

    CAS  Article  Google Scholar 

  31. 31.

    Broughton, J. P., Lovci, M. T., Huang, J. L., Yeo, G. W., & Pasquinelli, A. E. (2016). Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Molecular Cell, 64, 320–333.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Zheng, G. X., Ravi, A., Calabrese, J. M., et al. (2011). A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells. PLoS Genetics, 7, e1002054.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Cao, Y., Guo, W. T., Tian, S., et al. (2015). miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. The EMBO Journal, 34, 609–623.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Sinkkonen, L., Hugenschmidt, T., Berninger, P., et al. (2008). MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature Structural & Molecular Biology, 15, 259–267.

    CAS  Article  Google Scholar 

  35. 35.

    Kanellopoulou, C., Gilpatrick, T., Kilaru, G., et al. (2015). Reprogramming of Polycomb-Mediated Gene Silencing in Embryonic Stem Cells by the miR-290 Family and the Methyltransferase Ash1l. Stem Cell Reports, 5, 971–978.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Sherstyuk, V. V., Medvedev, S. P., Elisaphenko, E. A., et al. (2017). Genome-wide profiling and differential expression of microRNA in rat pluripotent stem cells. Scientific Reports, 7, 2787.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Zhang, W., Zhong, L., Wang, J., & Han, J. (2016). Distinct MicroRNA Expression Signatures of Porcine Induced Pluripotent Stem Cells under Mouse and Human ESC Culture Conditions. PloS One, 11, e0158655.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. 38.

    Maraghechi, P., Hiripi, L., Toth, G., Bontovics, B., Bosze, Z., & Gocza, E. (2013). Discovery of pluripotency-associated microRNAs in rabbit preimplantation embryos and embryonic stem-like cells. Reproduction (Cambridge, England), 145, 421–437.

    CAS  Article  Google Scholar 

  39. 39.

    Nichols, J., Silva, J., Roode, M., & Smith, A. (2009). Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development (Cambridge, England), 136, 3215–3222.

    CAS  Article  Google Scholar 

  40. 40.

    Silva, J., Barrandon, O., Nichols, J., Kawaguchi, J., Theunissen, T. W., & Smith, A. (2008). Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biology, 6, e253.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Wray, J., Kalkan, T., Gomez-Lopez, S., et al. (2011). Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biology, 13, 838–845.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Ying, Q. L., Wray, J., Nichols, J., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453, 519–523.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Yan, Y., Yang, X., Li, T. T., et al. (2017). Significant differences of function and expression of microRNAs between ground state and serum-cultured pluripotent stem cells. Journal of Genetics and Genomics = Yi chuan xue bao, 44, 179–189.

    PubMed  Article  Google Scholar 

  44. 44.

    Wang, A., He, Q., & Zhong, Y. (2015). Systematically dissecting the global mechanism of miRNA functions in mouse pluripotent stem cells. BMC genomics, 16, 490.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Ai, Z., Shao, J., Shi, X., et al. (2016). Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901. Stem Cells International, 2016, 1792573.

  46. 46.

    Wu, Y., Liu, F., Liu, Y., et al. (2015). GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime inhibit microRNA maturation in mouse embryonic stem cells. Scientific Reports, 5, 8666.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Cirera-Salinas, D., Yu, J., Bodak, M., Ngondo, R. P., Herbert, K. M., & Ciaudo, C. (2017). Noncanonical function of DGCR8 controls mESC exit from pluripotency. The Journal of Cell Biology, 216, 355–366.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Gonzalez, F., Boue, S., & Izpisua Belmonte, J. C. (2011). Methods for making induced pluripotent stem cells: reprogramming a la carte. Nature Reviews Genetics, 12, 231–242.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Hou, P., Li, Y., Zhang, X., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Lin, S. L., Chang, D. C., Chang-Lin, S., et al. (2008). Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. Rna, 14, 2115–2124.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Anokye-Danso, F., Trivedi, C. M., Juhr, D., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Miyoshi, N., Ishii, H., Nagano, H., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8, 633–638.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Judson, R. L., Babiarz, J. E., Venere, M., & Blelloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27, 459–461.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Bernstein, B. E., Mikkelsen, T. S., Xie, X., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–326.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Chin, M. H., Mason, M. J., Xie, W., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5, 111–123.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Meissner, A., Mikkelsen, T. S., Gu, H., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454, 766–770.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Panopoulos, A. D., Yanes, O., Ruiz, S., et al. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22, 168–177.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Phanstiel, D. H., Brumbaugh, J., Wenger, C. D., et al. (2011). Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nature Methods, 8, 821–827.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Gruber, A. J., Grandy, W. A., Balwierz, P. J., et al. (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. Nucleic Acids Research, 42, 9313–9326.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Li, Z., Yang, C. S., Nakashima, K., & Rana, T. M. (2011). Small RNA-mediated regulation of iPS cell generation. The EMBO Journal, 30, 823–834.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Liao, B., Bao, X., Liu, L., et al. (2011). MicroRNA cluster 302–367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. The Journal of Biological Chemistry, 286, 17359–17364.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Subramanyam, D., Lamouille, S., Judson, R. L., et al. (2011). Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nature Biotechnology, 29, 443–448.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Samavarchi-Tehrani, P., Golipour, A., David, L., et al. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7, 64–77.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Li, R., Liang, J., Ni, S., et al. (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7, 51–63.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Gregory, P. A., Bert, A. G., Paterson, E. L., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. The Journal of Biological Chemistry, 283, 14910–14914.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wang, G., Guo, X., Hong, W., et al. (2013). Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proceedings of the National Academy of Sciences of the United States of America, 110, 2858–2863.

  68. 68.

    Judson, R. L., Greve, T. S., Parchem, R. J., & Blelloch, R. (2013). MicroRNA-based discovery of barriers to dedifferentiation of fibroblasts to pluripotent stem cells. Nature Structural & Molecular Biology, 20, 1227–1235.

    CAS  Article  Google Scholar 

  69. 69.

    Hu, S., Wilson, K. D., Ghosh, Z., et al. (2013). MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem cells (Dayton, Ohio), 31, 259–268.

    CAS  Article  Google Scholar 

  70. 70.

    Choi, Y. J., Lin, C. P., Ho, J. J., et al. (2011). miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature Cell Biology, 13, 1353–1360.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Prigione, A., Rohwer, N., Hoffmann, S., et al. (2014). HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem cells (Dayton, Ohio), 32, 364–376.

    CAS  Article  Google Scholar 

  72. 72.

    Folmes, C. D., Martinez-Fernandez, A., Faustino, R. S., et al. (2013). Nuclear reprogramming with c-Myc potentiates glycolytic capacity of derived induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 6, 10–21.

    PubMed  Article  Google Scholar 

  73. 73.

    Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M., & Teitell, M. A. (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11, 589–595.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Konno, M., Koseki, J., Kawamoto, K., et al. (2015). Embryonic MicroRNA-369 Controls Metabolic Splicing Factors and Urges Cellular Reprograming. PloS One, 10, e0132789.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Lee, M. R., Mantel, C., Lee, S. A., Moon, S. H., & Broxmeyer, H. E. (2016). MiR-31/SDHA Axis Regulates Reprogramming Efficiency through Mitochondrial Metabolism. Stem Cell Reports, 7, 1–10.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Guo, X., Liu, Q., Wang, G., et al. (2013). microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Cell Research, 23, 142–156.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    He, X., Cao, Y., Wang, L., et al. (2014). Human fibroblast reprogramming to pluripotent stem cells regulated by the miR19a/b-PTEN axis. PloS One, 9, e95213.

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Wu, F., Tao, L., Gao, S., et al. (2017). miR-6539 is a novel mediator of somatic cell reprogramming that represses the translation of Dnmt3b. The Journal of Reproduction and Development, 63, 415–423.

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Ye, D., Wang, G., Liu, Y., et al. (2012). MiR-138 promotes induced pluripotent stem cell generation through the regulation of the p53 signaling. Stem cells (Dayton, Ohio), 30, 1645–1654.

    CAS  Article  Google Scholar 

  80. 80.

    Yang, C. S., Li, Z., & Rana, T. M. (2011). microRNAs modulate iPS cell generation. Rna, 17, 1451–1460.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Worringer, K. A., Rand, T. A., Hayashi, Y., et al. (2014). The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell, 14, 40–52.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Pfaff, N., Liebhaber, S., Mobus, S., et al. (2017). Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem Cell Research, 20, 70–75.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Barta, T., Peskova, L., Collin, J., et al. (2016). Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem cells (Dayton, Ohio), 34, 246–251.

    CAS  Article  Google Scholar 

  84. 84.

    Ma, Y., Yao, N., Liu, G., et al. (2015). Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells. The EMBO Journal, 34, 361–378.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Zhang, L., Zheng, Y., Sun, Y., et al. (2016). MiR-134-Mbd3 axis regulates the induction of pluripotency. Journal of Cellular and Molecular Medicine, 20, 1150–1158.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Liu, Z., Skamagki, M., Kim, K., & Zhao, R. (2015). Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming. Stem Cell Reports, 5, 1119–1127.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Miyoshi, K., Miyoshi, T., & Siomi, H. (2010). Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Molecular Genetics and Genomics : MGG, 284, 95–103.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Morin, R. D., O’Connor, M. D., Griffith, M., et al. (2008). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Research, 18, 610–621.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Luciano, D. J., Mirsky, H., Vendetti, N. J., & Maas, S. (2004). RNA editing of a miRNA precursor. Rna, 10, 1174–1177.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Yang, W., Chendrimada, T. P., Wang, Q., et al. (2006). Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nature Structural & Molecular Biology, 13, 13–21.

    CAS  Article  Google Scholar 

  91. 91.

    Pantano, L., Estivill, X., & Marti, E. (2010). SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Research, 38, e34.

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Tan, G. C., Chan, E., Molnar, A., et al. (2014). 5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Research, 42, 9424–9435.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Cloonan, N., Wani, S., Xu, Q., et al. (2011). MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biology, 12, R126.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Hinton, A., Hunter, S. E., Afrikanova, I., et al. (2014). sRNA-seq analysis of human embryonic stem cells and definitive endoderm reveals differentially expressed microRNAs and novel IsomiRs with distinct targets. Stem cells (Dayton, Ohio), 32, 2360–2372.

    CAS  Article  Google Scholar 

  95. 95.

    Yuan, Z., Ding, S., Yan, M., et al. (2015). Variability of miRNA expression during the differentiation of human embryonic stem cells into retinal pigment epithelial cells. Gene, 569, 239–249.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Clancy, J. L., Patel, H. R., Hussein, S. M., et al. (2014). Small RNA changes en route to distinct cellular states of induced pluripotency. Nature Communications, 5, 5522.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Langenberger, D., Bermudez-Santana, C., Hertel, J., Hoffmann, S., Khaitovich, P., & Stadler, P. F. (2009). Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics (Oxford, England), 25, 2298–2301.

    CAS  Article  Google Scholar 

  98. 98.

    Asikainen, S., Heikkinen, L., Juhila, J., et al. (2015). Selective microRNA-Offset RNA expression in human embryonic stem cells. PloS One, 10, e0116668.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Zhao, J., Schnitzler, G. R., Iyer, L. K., Aronovitz, M. J., Baur, W. E., & Karas, R. H. (2016). MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation. PloS One, 11, e0156772.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Dupuis-Sandoval, F., Poirier, M., & Scott, M. S. (2015). The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdisciplinary Reviews RNA, 6, 381–397.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Newton, K., Petfalski, E., Tollervey, D., & Caceres, J. F. (2003). Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Molecular and Cellular Biology, 23, 8519–8527.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Zhang, Y., Xu, C., Gu, D., et al. (2017). H/ACA Box Small Nucleolar RNA 7A Promotes the Self-Renewal of Human Umbilical Cord Mesenchymal Stem Cells. Stem cells (Dayton, Ohio), 35, 222–235.

    CAS  Article  Google Scholar 

  103. 103.

    Fong, Y. W., Ho, J. J., Inouye, C., & Tjian, R. (2014). The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells. eLife, 3.

  104. 104.

    Skreka, K., Schafferer, S., Nat, I. R., et al. (2012). Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation. Nucleic Acids Research, 40, 6001–6015.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Brameier, M., Herwig, A., Reinhardt, R., Walter, L., & Gruber, J. (2011). Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Research, 39, 675–686.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Ender, C., Krek, A., Friedlander, M. R., et al. (2008). A human snoRNA with microRNA-like functions. Molecular Cell, 32, 519–528.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Taft, R. J., Glazov, E. A., Lassmann, T., Hayashizaki, Y., Carninci, P., & Mattick, J. S. (2009). Small RNAs derived from snoRNAs. Rna, 15, 1233–1240.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Mattick, J. S. (2007). A new paradigm for developmental biology. The Journal of Experimental Biology, 210, 1526–1547.

    PubMed  Article  Google Scholar 

  109. 109.

    Guttman, M., Amit, I., Garber, M., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 458, 223–227.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Guttman, M., Garber, M., Levin, J. Z., et al. (2010). Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology, 28, 503–510.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    St Laurent, G., Vyatkin, Y., Antonets, D., et al. (2016). Functional annotation of the vlinc class of non-coding RNAs using systems biology approach. Nucleic Acids Research, 44, 3233–3252.

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    Derrien, T., Johnson, R., Bussotti, G., et al. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research, 22, 1775–1789.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Guttman, M., Donaghey, J., Carey, B. W., et al. (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477, 295–300.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Lin, N., Chang, K. Y., Li, Z., et al. (2014). An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Molecular Cell, 53, 1005–1019.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Chakraborty, D., Kappei, D., Theis, M., et al. (2012). Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nature Methods, 9, 360–362.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Ng, S. Y., Johnson, R., & Stanton, L. W. (2012). Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. The EMBO Journal, 31, 522–533.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P., & Lipovich, L. (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. Rna, 16, 324–337.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Wu, C. S., Yu, C. Y., Chuang, C. Y., et al. (2014). Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Research, 24, 25–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Yu, C. Y., & Kuo, H. C. (2016). The Trans-Spliced Long Noncoding RNA tsRMST Impedes Human Embryonic Stem Cell Differentiation Through WNT5A-Mediated Inhibition of the Epithelial-to-Mesenchymal Transition. Stem cells (Dayton, Ohio), 34, 2052–2062.

    CAS  Article  Google Scholar 

  120. 120.

    Shevchenko, A. I., Zakharova, I. S., & Zakian, S. M. (2013). The evolutionary pathway of x chromosome inactivation in mammals. Acta Naturae, 5, 40–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J., & Lee, J. T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322, 750–756.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Khalil, A. M., Guttman, M., Huarte, M., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667–11672.

  123. 123.

    Yang, Y. W., Flynn, R. A., Chen, Y., et al. (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3, e02046.

  124. 124.

    Zhou, Y., Dai, Q. S., Zhu, S. C., et al. (2016). AK048794 maintains the mouse embryonic stem cell pluripotency by functioning as an miRNA sponge for miR-592. The Biochemical Journal, 473, 3639–3654.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Wang, Y., Xu, Z., Jiang, J., et al. (2013). Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Developmental Cell, 25, 69–80.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Durruthy-Durruthy, J., Sebastiano, V., Wossidlo, M., et al. (2016). The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nature Genetics, 48, 44–52.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Niazi, F., & Valadkhan, S. (2012). Computational analysis of functional long noncoding RNAs reveals lack of peptide-coding capacity and parallels with 3′ UTRs. Rna, 18, 825–843.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Mumtaz, M. A., & Couso, J. P. (2015). Ribosomal profiling adds new coding sequences to the proteome. Biochemical Society Transactions, 43, 1271–1276.

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Ingolia, N. T., Lareau, L. F., & Weissman, J. S. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell, 147, 789–802.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Ingolia, N. T., Brar, G. A., Stern-Ginossar, N., et al. (2014). Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Reports, 8, 1365–1379.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Banfai, B., Jia, H., Khatun, J., et al. (2012). Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 22, 1646–1657.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S., & Lander, E. S. (2013). Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 154, 240–251.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Ji, Z., Song, R., Regev, A., & Struhl, K. (2015). Many lncRNAs, 5′UTRs, and pseudogenes are translated and some are likely to express functional proteins. eLife, 4, e08890.

  134. 134.

    Nelson, B. R., Makarewich, C. A., Anderson, D. M., et al. (2016). A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 351, 271–275.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Szafron, L. M., Balcerak, A., Grzybowska, E. A., et al. (2015). The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues. PloS One, 10, e0127475.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. 136.

    Hussein, S. M., Puri, M. C., Tonge, P. D., et al. (2014). Genome-wide characterization of the routes to pluripotency. Nature, 516, 198–206.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Kim, D. H., Marinov, G. K., Pepke, S., et al. (2015). Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell, 16, 88–101.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Loewer, S., Cabili, M. N., Guttman, M., et al. (2010). Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 42, 1113–1117.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Zhang, A., Zhou, N., Huang, J., et al. (2013). The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Research, 23, 340–350.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Kang, L., Wang, J., Zhang, Y., Kou, Z., & Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 5, 135–138.

    CAS  PubMed  Article  Google Scholar 

  141. 141.

    Stadtfeld, M., Apostolou, E., Akutsu, H., et al. (2010). Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 465, 175–181.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Sverdlov, E. D. (2000). Retroviruses and primate evolution. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 22, 161–171.

    CAS  Article  Google Scholar 

  143. 143.

    Goke, J., Lu, X., Chan, Y. S., et al. (2015). Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell, 16, 135–141.

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Santoni, F. A., Guerra, J., & Luban, J. (2012). HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology, 9, 111.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Wang, J., Xie, G., Singh, M., et al. (2014). Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature, 516, 405–409.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Yue, D., Liu, H., & Huang, Y. (2009). Survey of Computational Algorithms for MicroRNA Target Prediction. Current Genomics, 10, 478–492.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Chi, S. W., Zang, J. B., Mele, A., & Darnell, R. B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460, 479–486.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. 148.

    Hafner, M., Landthaler, M., Burger, L., et al. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141, 129–141.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Kuhn, D. E., Martin, M. M., Feldman, D. S., Terry, A. V. Jr., Nuovo, G. J., & Elton, T. S. (2008). Experimental validation of miRNA targets. Methods (San Diego, Calif.), 44, 47–54.

    CAS  Article  Google Scholar 

  150. 150.

    Bassett, A. R., Azzam, G., Wheatley, L., et al. (2014). Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nature Communications, 5, 4640.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Esau, C. C. (2008). Inhibition of microRNA with antisense oligonucleotides. Methods (San Diego, Calif.), 44, 55–60.

    CAS  Article  Google Scholar 

  152. 152.

    Tay, F. C., Lim, J. K., Zhu, H., Hin, L. C., & Wang, S. (2015). Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Advanced Drug Delivery Reviews, 81, 117–127.

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Chang, H., Yi, B., Ma, R., Zhang, X., Zhao, H., & Xi, Y. (2016). CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Scientific Reports, 6, 22312.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Zhang, Z., Xiang, D., Heriyanto, F., Gao, Y., Qian, Z., & Wu, W. S. (2013). Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Reports, 1, 218–225.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Liu, Z., Hui, Y., Shi, L., et al. (2016). Efficient CRISPR/Cas9-Mediated Versatile, Predictable, and Donor-Free Gene Knockout in Human Pluripotent Stem Cells. Stem Cell Reports, 7, 496–507.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Essletzbichler, P., Konopka, T., Santoro, F., et al. (2014). Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Research, 24, 2059–2065.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Han, J., Zhang, J., Chen, L., et al. (2014). Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9. RNA Biology, 11, 829–835.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Ho, T. T., Zhou, N., Huang, J., et al. (2015). Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Research, 43, e17.

    PubMed  Article  CAS  Google Scholar 

  159. 159.

    Zhu, S., Li, W., Liu, J., et al. (2016). Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nature Biotechnology, 34, 1279–1286.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M., & Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Communications, 3, 968.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  161. 161.

    Qi, L. S., Larson, M. H., Gilbert, L. A., et al. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Gilbert, L. A., Larson, M. H., Morsut, L., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154, 442–451.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (project №16-14-10084).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suren M. Zakian.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sherstyuk, V.V., Medvedev, S.P. & Zakian, S.M. Noncoding RNAs in the Regulation of Pluripotency and Reprogramming. Stem Cell Rev and Rep 14, 58–70 (2018). https://doi.org/10.1007/s12015-017-9782-9

Download citation

Keywords

  • Pluripotent stem cells
  • Pluripotency
  • Reprogramming
  • Noncoding RNA
  • MicroRNA
  • Long noncoding RNA
  • Genome editing
  • CRISPR/Cas9