Stem Cell Reviews and Reports

, Volume 14, Issue 1, pp 43–57 | Cite as

The Advancement of Biomaterials in Regulating Stem Cell Fate

  • Vun Vun Hiew
  • Siti Fatimah Binti Simat
  • Peik Lin TeohEmail author


Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles.


Mesenchymal stem cells Differentiation Regenerative medicine Tissue regeneration Natural biomaterials Synthetic biomaterials Tissue engineering 



Authors thank Ministry of Higher Education for providing funding for this project (TRGS0003-SG-2/2014).

Compliance with Ethical Standards


The authors indicate no potential conflicts of interest.


  1. 1.
    Bianco, P., & Robey, P. G. (2001). Stem cells in tissue engineering. Nature, 414, 118–121.PubMedCrossRefGoogle Scholar
  2. 2.
    Koh, C. J., & Atala, A. (2004). Tissue engineering, stem cells and cloning: opportunities for regenerative medicine. Journal of the American Society of Nephrology, 15, 1113–1125.PubMedCrossRefGoogle Scholar
  3. 3.
    Tong, Z., Solanki, A., Hamilos, A., Levy, O., Wen, K., Yin, X., & Karp, J. M. (2015). Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO Journal, 4(8), 987–1008.CrossRefGoogle Scholar
  4. 4.
    Dawson, E., Mapili, G., Erikson, K., Taqvi, S., & Roy, K. (2008). Biomaterials for stem cell differentiation. Advanced Drug Delivery Reviews, 60, 215–228.PubMedCrossRefGoogle Scholar
  5. 5.
    Shahriyari, L., & Komarova, N. L. (2013). Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? PLoS ONE, 8(10), e76195.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Murke, F., Castro, S. V. C., Giebel, B., & Görgens, A. (2015). Concise review: asymmetric cell divisions in stem cell biology. Symmetry, 7, 2025–2037.CrossRefGoogle Scholar
  7. 7.
    Salem, H., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28, 585–596.PubMedGoogle Scholar
  8. 8.
    Takahashi, K., Tanabe, K., Mari, O., Narita, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.PubMedCrossRefGoogle Scholar
  9. 9.
    Hentze, H., Soong, P. L., Wang, S. T., Phillips, B. W., et al. (2009). Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Research, 2, 198–210.PubMedCrossRefGoogle Scholar
  10. 10.
    Medvedev, S. P., Shevchenko, A. I., & Zakian, S. M. (2010). Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae, 2(5), 18–27.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wei, X., Yang, X., Han, Z., Qu, F., Shao, L., & Shi, Y. (2013). Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacologica Sinica, 34, 747–754.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Zhao, C., Tan, A., Pastorin, G., & Ho, H. K. (2013). Nanomaterials scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 31, 654–668.PubMedCrossRefGoogle Scholar
  13. 13.
    Baksh, D., Song, L., & Tuan, R. S. (2004). Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. Journal of Cellular and Molecular Medicine, 8(3), 301–316.PubMedCrossRefGoogle Scholar
  14. 14.
    Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Yousefi, A.-M., James, P. F., Akbarzadeh, R., et al. (2016). Prospect of stem cells in bone tissue engineering: a review. Stem Cells International, 2016, 1–13.CrossRefGoogle Scholar
  16. 16.
    Lindermair, A., Hatlapatka, T., Kollwig, G., et al. (2012). Mesenchymal stem or stromal cells from amnion and umbilical cord tissue and their potential for clinical applications. Cells, 1(4), 1061–1088.CrossRefGoogle Scholar
  17. 17.
    Sterodimas, A., de Faria, J., Nicaretta, B., & Pitamguy, I. (2010). Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. Journal of Plastic, Reconstructive & Asthetic Surgery, 63, 1886–1892.CrossRefGoogle Scholar
  18. 18.
    Rocca, G. L., Anzalone, R., Corrao, S., Magno, F., et al. (2009). Isolation and characterisation of Oct-4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry Cell Biology, 131, 267–282.PubMedCrossRefGoogle Scholar
  19. 19.
    Divya, M. S., Roshin, G. E., Divya, T. S., et al. (2012). Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesechymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Research & Therapy, 3, 57–72.CrossRefGoogle Scholar
  20. 20.
    Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.PubMedCrossRefGoogle Scholar
  21. 21.
    Williams, J. T., Sheila, S. S., Souza, J., Calcutt, A. F., & Cartledge, R. G. (1999). Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesoderm phenotypes. The American Surgeon, 65, 22–26.PubMedGoogle Scholar
  22. 22.
    Hoffman, A. M., Paxson, J. A., Mazan, M. R., et al. (2011). Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells and Development, 20(10), 1779–1792.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yasui, T., Mabuchi, Y., Toriumis, H., et al. (2016). Purified human dental pulp stem cells promote osteogenic regeneration. Journal of Dental Research, 95(2), 206–214.PubMedCrossRefGoogle Scholar
  24. 24.
    Bari, D. C., Dell’Accio, F., Vandenabeele, F., Vermeesch, J. R., Raymackers, J., & Luyten, F. P. (2003). Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. The Journal of Cell Biology, 160(6), 909–918.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Wan, C., He, Q., & Li, G. (2006). Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model. Journal of Orthopaedic Research, 24, 610–618.PubMedCrossRefGoogle Scholar
  26. 26.
    Götherström, C., Ringdén, O., Westgren, M., Tammik, C., & Blanc, K. L. (2003). Mesenchymal stem cells immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplantation, 32, 265–272.PubMedCrossRefGoogle Scholar
  27. 27.
    Domini, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International society for cellular therapy position statement. Cytotherapy, 8(4), 315–317.CrossRefGoogle Scholar
  28. 28.
    Horwitz, E. D., Andreef, M., & Frassoni, F. (2006). Mesenchymal stromal cells. Current Opinion in Hematology, 13(6), 419–425.PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Leor, J., Amsalem, Y., & Cohen, S. (2005). Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacology & Therapeutics, 105, 151–163.CrossRefGoogle Scholar
  30. 30.
    Schaap-Oziemlak, A. M., Kühn, P. T., van Kooten, T. G., & van Rijn, P. (2014). Biomaterial-stem cell interactions and their impact on stem cell response. Royal Society of Chemistry Advances, 4, 53307–53320.Google Scholar
  31. 31.
    Higuchi, A., Ling, Q., Chang, Y., Hsu, S., & Umezawa, A. (2013). Physical cues of biomaterials guide stem cell differentiation fate. Chemical Reviews, 113, 3297–3328.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams, D. F. (1987). Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3–5, 1986. Elsevier.Google Scholar
  33. 33.
    Coburn, J. C., & Pandit, A. (2007). Development of naturally-derived biomaterials and optimization of their biomechanical properties. In. N. Ashammakhi, R. Reis & E. Chiellini (Eds.), Topics in tissue engineering, (pp. 1–32). Accessed 5 June 2017.Google Scholar
  34. 34.
    Parenteau-Bareil, R., Gauvin, R., & Berthod, F. (2010). Collagen-based biomaterials for tissue engineering applications. Materials, 3, 1863–1887.PubMedCentralCrossRefGoogle Scholar
  35. 35.
    Buma, P., Pieper, J. S., Tienen, T. V., et al. (2003). Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects– a study in rabbits. Biomaterials, 24, 3255–3263.PubMedCrossRefGoogle Scholar
  36. 36.
    Bosnakovski, D., Mizuno, M., Kim, G., Takagi, S., Masahiro, O., & Fujinaga, T. (2006). Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnology and Bioengineering, 93(6), 1152–1163.PubMedCrossRefGoogle Scholar
  37. 37.
    Rasmussen, C. H., Petersen, D. R., Moeller, J. B., Hansson, M., & Dufva, M. (2015). Collagen type I improves the differentiation of human embryonic stem cells towards definitive endoderm. PLoS ONE, 10(12), e0145389.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Daamen, W. F., Veerkamp, J. H., van Hest, J. C. M., & van Kuppevelt, T. H. (2007). Elastin as a biomaterial for tissue engineering. Biomaterials, 28, 4378–4398.PubMedCrossRefGoogle Scholar
  39. 39.
    Ozsvar, J., Mithieux, S. M., Wang, R., & Weiss, A. S. (2015). Elastin-based biomaterials and mesenchymal stem cells. Biomaterials Science, 3, 800–809.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Betre, H., Ong, S. R., Guilak, F., Chilkoti, B. F., & Setton, L. A. (2006). Chondrocytic differentiation of human adipose-derived stem cells in elastin-like polypeptide. Biomaterials, 27, 91–99.PubMedCrossRefGoogle Scholar
  41. 41.
    Vyavahare, N., Ogle, M., Schoen, F. J., & Levy, R. J. (1999). Elastin calcification and its prevention with aluminum chloride pretreatment. American Journal of Pathology, 155(3), 873–982.CrossRefGoogle Scholar
  42. 42.
    Chung, C., Anderson, E., Pera, R. R., Pruitt, B. L., & Heilshorn, S. C. (2012). Hydrogel crosslinking density regulates temporal contractility of human embryonic stem cell-derived cardiomyocytes in 3D cultures. Soft Matter, 8(39), 10141–10148.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Proulx, M. K., Carey, S. P., DiTroia, L. M., et al. (2011). Fibrin microthreads support mesenchymal stem cell growth while maintaining differentiation potential. Journal of Biomedical Materials Research A, 96(2), 301–312.CrossRefGoogle Scholar
  44. 44.
    Willerth, S. M., Arendas, K. J., Gottlie, D. I., & Sakiyama-Elbert, S. E. (2006). Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials, 27, 5990–6003.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32, 991–1007.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mandal, B. B., & Kundu, S. C. (2009). Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials, 30, 2956–2965.PubMedCrossRefGoogle Scholar
  47. 47.
    Uebersax, L., Merkle, H. P., & Meinel, L. (2008). Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation on human mesenchymal stem cells. Journal of Controlled Release, 127, 12–21.PubMedCrossRefGoogle Scholar
  48. 48.
    Garcia-Fuentes, M., Meinel, A. J., Hilbe, M., Meinel, L., & Merkle, H. P. (2009). Silk fibroin/ hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials, 30, 5068–5076.PubMedCrossRefGoogle Scholar
  49. 49.
    Lei, Y., Gojgini, S., Lam, J., & Segura, T. (2011). The spreading, migration, and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 32, 39–47.PubMedCrossRefGoogle Scholar
  50. 50.
    Turner, N. J., Kielty, C. M., Walker, M. G., & Canfield, A. E. (2004). A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts. Biomaterials, 25, 5955–5964.PubMedCrossRefGoogle Scholar
  51. 51.
    Kim, J., Kim, I. S., Cho, T. H., et al. (2007). Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials, 28, 1830–1837.PubMedCrossRefGoogle Scholar
  52. 52.
    Mauck, R. L., Yuan, X., & Tuan, R. S. (2006). Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteo Arthritis and Cartilage, 14, 179–189.CrossRefGoogle Scholar
  53. 53.
    Huang, C. Y. C., Reuben, P. M., D’ippolito, G., Schiller, P. C., & Cheung, H. S. (2004). Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. The Anatomical Record Part A, 278A, 428–436.CrossRefGoogle Scholar
  54. 54.
    Awad, H. A., Wickham, M. Q., Leddy, H. A., Gimble, J. M., & Guilak, F. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25, 3211–3222.PubMedCrossRefGoogle Scholar
  55. 55.
    Al-Rammah, T. Y. (2014). Alginate microencapsulation of stem cells as alternative source to the limited supply of donor tissue. Biomedical Research, 25(2), 276–280.Google Scholar
  56. 56.
    Wang, N., Adams, G., Buttery, L., Falcone, F. H., & Stolnik, S. (2009). Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. Journal of Biotechnology, 144, 304–312.PubMedCrossRefGoogle Scholar
  57. 57.
    Wilson, J. L., Najia, M. A., Saeed, R., & McDevitt, T. C. (2014). Alginate encapsulation parameters influence the differentiation of microencapsualted embryonic stem cell aggregates. Biotechnology and Bioengineering, 111(3), 618–631.PubMedCrossRefGoogle Scholar
  58. 58.
    Chandy, T., & Sharma, C. P. (1990). Chitosan- as a biomaterial. Biomaterial Artificial Cells and Artificial Organs, 18(1), 1–24.CrossRefGoogle Scholar
  59. 59.
    Moreau, J. L., & Xu, H. H. K. (2009). Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold. Biomaterials, 30, 2675–2682.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Richardson, S. M., Hughes, N., Hunt, J. A., Freemont, A. J., & Hoyland, J. A. (2008). Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials, 29, 85–93.PubMedCrossRefGoogle Scholar
  61. 61.
    Lutolf, M. P., & Hubbel, J. A. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 23, 47–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Choi, Y. S., Park, S., & Suh, H. (2005). Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials, 26, 5855–5863.PubMedCrossRefGoogle Scholar
  63. 63.
    Uematsu, K., Hattori, K., Ishimoto, Y., et al. (2005). Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 26, 4273–4279.PubMedCrossRefGoogle Scholar
  64. 64.
    Lock, J., & Liu, H. (2011). Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. International Journal of Nanomedicine, 6, 2769–2777.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Levenberg, S., Huang, N. F., Layik, E., Rogers, A. B., Itskovitz-Eldors, J., & Langer, R. (2003). Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proceedings of the National Academy of Sciences, 100(22), 12741–12746.CrossRefGoogle Scholar
  66. 66.
    Zhao, L., & Detamore, M. S. (2010). Chondrogenic differentiation of stem cells in human umbilical cord stromal with PGA and PLLA scaffolds. Journal of Biomedical Science and Engineering, 3(11), 1041–1049.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Nuttelman, C. R., Tripodi, M. C., & Anseth, K. S. (2004). In vitro osteogenic differentiation of human mesenchymal stem cells photoencapsulated in PEG hydrogels. Journal of Biomedical Materials Research, 68(4), 773–782.PubMedCrossRefGoogle Scholar
  68. 68.
    Matsushima, A., Kotobuki, N., Tadokoro, M., Kawate, K., Yajima, H., Takakura, Y., & Ohgushi, H. (2009). In vivo osteogenic capability of human mesenchymal cells cultured on hydroxyapatite and on beta-tricalcium phosphate. Journal of Artificial Organs, 33(6), 474–481.CrossRefGoogle Scholar
  69. 69.
    Shimaoka, H., Dohi, Y., Ohgushi, H., Ikeuchi, M., Okamoto, M., Kudo, A., Kirita, T., & Yonemase, K. (2004). Recombinant growth/differentiation factor-5 (GDF-5) stimulates osteogenic differentiation of marrow mesenchymal stem cells in porous hydroapatite ceramic. Journal of Biomedical Materials Research Part A, 68(1), 168–176.PubMedCrossRefGoogle Scholar
  70. 70.
    Stiehler, M., Lind, M., Mygind, T., et al. (2008). Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces. Journal of Biomedical Materials Research Part A, 86(2), 448–458.PubMedCrossRefGoogle Scholar
  71. 71.
    Marycz, K., Smieszek, A., Grzesiak, J., Donesz-Sikorska, A., & Krzak-Ro, J. (2013). Application of bone marrow and adipose-derived mesenchymal stem cells for testing the biocompatibility of metal-based biomaterials functionalized with ascorbic acid. Biomedical Materials, 8(6), 065004.PubMedCrossRefGoogle Scholar
  72. 72.
    Frosch, K., Drengka, A., Krause, P., et al. (2006). Stem cell-coated titanium implants for the partial joint resurfacing of the knee. Biomaterials, 27, 2542–2549.PubMedCrossRefGoogle Scholar
  73. 73.
    Yang, J., Wang, J., Yuan, T., Zhu, X. D., Xiang, Z., Fan, Y. J., & Zhang, X. D. (2013). The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 24, 2235–2246.PubMedGoogle Scholar
  74. 74.
    Kalbacova, M., Broz, A., Kong, J., & Kalbac, M. (2010). Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon, 48, 4323–4329.CrossRefGoogle Scholar
  75. 75.
    Garcia-Allegria, E., Illuit, M., Stefanska, M., et al. (2016). Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Scientific Report, 6, 25917.CrossRefGoogle Scholar
  76. 76.
    Chen, G. Y., Pang, D. W. P., Hwang, S. M., Tuan, H. Y., & Hua, Y. C. (2012). A Graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 33, 418–427.PubMedCrossRefGoogle Scholar
  77. 77.
    Talukdar, Y., Rashkow, J. T., Lalwani, G., Kanakia, S., & Sitharaman, B. (2014). The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials, 35, 4863–4877.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Shin, Y. N., Kim, B. S., Ahn, H. H., et al. (2008). Adhesion comparison of human bone marrow stem cells on a gradient wettable surface prepared by corona treatment. Applied Surface Sciences, 255, 293–296.CrossRefGoogle Scholar
  79. 79.
    Valamehr, B., Jonas, S. J., Polleux, J., et al. (2008). Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embrypid bodies. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14459–14464.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Müller, R., Abke, J., Schnell, E., Macionczyk, F., et al. (2005). Surface engineering of stainless steel materials by covalent collagen immobilizaion to improve implant biocompatibility. Biomaterials, 26, 6962–6972.PubMedCrossRefGoogle Scholar
  81. 81.
    Hwang, N. S., Varghese, S., Hanwei, L., & Elisseeff, J. (2011). Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell and Tissue Research, 344, 499–509.PubMedCrossRefGoogle Scholar
  82. 82.
    Annabi, N., Fathi, A., Mithieux, S. M., Martens, P., Weiss, A. S., & Dehghani, F. (2011). The effect of elastin on chondrocyte adhesion and proliferation on poly (ɛ-caprolactone)/elastin composites. Biomaterials, 32(6), 1517–1525.PubMedCrossRefGoogle Scholar
  83. 83.
    Arahira, T., & Todo, M. (2014). Effects of proliferation differentiation of mesenchymal stem cells compressive mechanical behaviour of collagen/β-TCP composite scaffold. Journal of the Mechanical Behaviour of Biomedical Materials, 39, 218–230.CrossRefGoogle Scholar
  84. 84.
    Daud, N. M., Sing, N. B., Yusop, A. H., Majid, F. A. A., & Hermawan, H. (2014). Degradation and in vitro cell-material interaction studies on hydroxyapatite coated biodegradable porous iron for hard tissue scaffolds. Journal of Orthopaedic Translation, 2, 177–184.CrossRefGoogle Scholar
  85. 85.
    Kim, B., & Mooey, D. J. (1998). Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 16, 224–229.PubMedCrossRefGoogle Scholar
  86. 86.
    Kim, H. J., Lee, J. H., & Im, G. I. (2010). Chondrogenesis using mesenchymal stem cells and PCL scaffolds. Journal of Biomedical Materials Research Part A, 92(2), 659–666.PubMedGoogle Scholar
  87. 87.
    Thibault, R. A., Baggett, L. S., Mikos, A. G., & Kasper, F. K. (2010). Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Tissue Engineering, 16(2), 431–440.PubMedCrossRefGoogle Scholar
  88. 88.
    Hermawan, H., Ramdan, D., & Djuansjah, J. R. P. (2011). Metals for biomedical applications. In R. Fazel (Ed.), Biomedical engineering - from theory to applications. InTech.
  89. 89.
    Dong, H. S., & Qi, S. J. (2015). Realising the potential of graphene-based materials for biosurfaces—a future perspective. Biosurface and Biotribology, 1(4), 229–248.CrossRefGoogle Scholar
  90. 90.
    Chai, C., & Leong, K. W. (2007). Biomaterials approach to expand and direct differentiation of stem cells. Molecular Therapy, 15, 467–480.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Martino, S., D’Angelo, F., Armentano, I., Kenny, J. M., & Orlacchio, A. (2012). Stem cell- biomaterial interactions for regenerative medicine. Biotechnology Advances, 30, 338–351.PubMedCrossRefGoogle Scholar
  92. 92.
    Dos Santos, V., Brandalise, R. N., & Savaris, M. (2017). Biomaterials: Characteristics and properties. In C. P. Bergmann (Series Ed.), Engineering of biomaterials (pp. 5–15). Topics in Mining, Metallurgy and Materials Engineering, Springer.
  93. 93.
    Anderson, H. J., Sahoo, J. K., Ulijn, R. V., & Dalby, M. J. (2016). Mesenchymal stem cell fate: applying biomaterials for control of stem cell behaviour. Frontiers in Bioengineering and Biotechnology. Scholar
  94. 94.
    Xu, Y., & Guan, J. (2016). Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioactive Materials, 1(1), 18–28.CrossRefGoogle Scholar
  95. 95.
    Krishna, L., Dhamodaran, K., Jayadev, C., et al. (2016). Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Research & Therapy, 7, 188.CrossRefGoogle Scholar
  96. 96.
    Singh, A., & Elisseeff, J. (2010). Biomaterials for stem cell differentiation. Journal of Materials Chemistry, 20, 8832–8847.CrossRefGoogle Scholar
  97. 97.
    Ahn, H. H., Lee, I. W., Lee, B. L., & Kim, M. S. (2014). Cellular behaviour of human adipose-derived stem cells on wettable gradient polyethylene surfaces. International Journal of Molecular Sciences, 15, 2075–2086.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hao, L., Yang, H., Du, C., et al. (2014). Directing the fate of human and mouse mesenchymal stem cells by hydroxyl-methyl mixed self-assembled monolayers with varying wettability. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2(30), 4794–4801.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Schaap-Oziemlak, A. M., Kühn, P. T., van Kooten, T. G., & van Rijin, P. (2014). Biomaterial-stem cell interactions and their impact on stem cell response. Royal Society of Chemistry, 4, 53307–53320.Google Scholar
  100. 100.
    Murphy, W. L., & McDevitt, T. C. (2014). Materials as stem cell regulators. Nature Materials, 13(6), 547–557.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Curran, J. M., Chen, R., & Hunt, J. A. (2006). The guidance of human mesenchumal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials, 27, 4783–4793.PubMedCrossRefGoogle Scholar
  102. 102.
    Ren, Y., Zhang, H., Huang, H., et al. (2009). In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials, 30, 1036–1044.PubMedCrossRefGoogle Scholar
  103. 103.
    Tsou, Y., Khoneisser, J., Huang, P., & Xu, X. (2016). Hydrogel as a bioactive material to regulate stem cell fate. Bioactive Materials, 1(1), 39–55.CrossRefGoogle Scholar
  104. 104.
    Feng, Q., Zhu, M., Wei, K., & Bian, L. (2014). Cell-mediated degeneration regulates human mesenchymal stem cell chondrogenesis and hypertrophy in MMP-sensitive hyaluronic acid hydrogels. PLoS One, 9(6), e99587.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Mello, M. A., & Tuan, R. S. (2006). Effects of TGF-beta1 and triidothronine on cartilage maturation: in vitro analysis using long term high-density micromass cultures of chick embryonic limb mesenchymal cells. Journal of Orthopaedic Research, 24, 2085–2105.CrossRefGoogle Scholar
  106. 106.
    Li, H., Zheng, Y., & Qin, L. (2014). Progress of biodegradable metals. Progress in Natural Science: Materials International, 24, 414–422.CrossRefGoogle Scholar
  107. 107.
    Le, N. N. T., Zorn, S., Schmitt, S. K., Gopalan, P., & Murphy, W. L. (2016). Hydrogel arrays formed via differential wettability patterning enable combinatorial screening of stem cell behaviour. Acta Biomaterial, 1(34), 93–103.CrossRefGoogle Scholar
  108. 108.
    Eroshenko, N., Ramachandran, R., Yadavalli, V. K., & Rao, R. R. (2013). Effect of substrate stiffness on early human embryonic stem cell differentiation. Journal of Biological Engineering, 7(1), 7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pek, Y. S., Wan, A. C. A., & Ying, J. Y. (2010). The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials, 31, 385–391.PubMedCrossRefGoogle Scholar
  110. 110.
    Dewitt, N. (2008). Regenerative medicine. Nature, 453(7193), 301–351.PubMedCrossRefGoogle Scholar
  111. 111.
    Asakura, A. (2014). Grand challenges in the field of stem cell research. Frontiers in Cell and Developmental Biology, 2, 1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Saiz, E., Zimmermannb, E. A., Lee, J. S., Wegst, U. G. K., & Tomsia, A. P. (2013). Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 29, 103–115.PubMedCrossRefGoogle Scholar
  113. 113.
    He, H. X., & Liu, H. C. (2010). Stem cell behaviours and functions modulated by biomaterials. Materials Technology, 25(3–4), 231–236.CrossRefGoogle Scholar
  114. 114.
    Bose, S., Mangal, R., & Bandyopadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10), 546–554.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Eslaminejad, M. B., Fani, N., & Shahhoseini, M. (2013). Epigenetic regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in culture. Cell Journal, 15(1), 1–10.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Biotechonology Research InstituteUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.C/o Biotechonology Research InstituteUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations