Avasthi, S., Srivastava, R., Singh, A., et al. (2008). Stem cell: past, present and future–a review article. Internet Journal of Medical Update, 3(1), 22–31.
Google Scholar
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.
CAS
PubMed
Article
Google Scholar
Nadig, R. R. (2009). Stem cell therapy-hype or hope? A review. Journal of Conservative Dentistry, 12(4), 131.
PubMed
PubMed Central
Article
Google Scholar
Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells-current trends and future prospective. Bioscience Reports, 35(2), e00191.
PubMed
PubMed Central
Article
CAS
Google Scholar
Lo, B., & Parham, L. (2009). Ethical issues in stem cell research. Endocrine Reviews, 30(3), 204–213.
PubMed
PubMed Central
Article
Google Scholar
Correia, A. S., Anisimov, S. V., Li, J. Y., et al. (2005). Stem cell-based therapy for Parkinson’s disease. Annals of Medicine, 37(7), 487–498.
CAS
PubMed
Article
Google Scholar
Zhang, J., Huang, X., Wang, H., et al. (2015). The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research & Therapy, 6(1), 234.
Article
Google Scholar
Aiuti, A., Slavin, S., Aker, M., et al. (2002). Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science, 296(5577), 2410–2413.
CAS
PubMed
Article
Google Scholar
Sun, Q., Zhang, Z., & Sun, Z. (2014). The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes & Diseases, 1(1), 113–119.
Article
Google Scholar
Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49.
CAS
PubMed
Article
Google Scholar
Mackay, A., Beck, S., Jaiswal, R., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.
PubMed
Article
Google Scholar
Tremain, N., Korkko, J., Ibberson, D., et al. (2001). MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages. Stem Cells, 19(5), 408–418.
CAS
PubMed
Article
Google Scholar
Petersen, B., Bowen, W., Patrene, K., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284(5417), 1168–1170.
CAS
PubMed
Article
Google Scholar
Schwartz, R. E., Reyes, M., Koodie, L., et al. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. The Journal of Clinical Investigation, 109(10), 1291–1302.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rose, R. A., Keating, A., & Backx, P. H. (2008). Do mesenchymal stromal cells transdifferentiate into functional cardiomyocytes? Circulation Research, 103(9), 120.
Article
CAS
Google Scholar
Pijnappels, D. A., Schalij, M. J., Ramkisoensing, A. A., et al. (2008). Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circulation Research, 103(2), 167–176.
CAS
PubMed
Article
Google Scholar
Tropel, P., Platet, N., Platel, J. C., et al. (2006). Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, 24(12), 2868–2876.
CAS
PubMed
Article
Google Scholar
Cogle, C. R., Yachnis, A. T., Laywell, E. D., et al. (2004). Bone marrow transdifferentiation in brain after transplantation: a retrospective study. The Lancet, 363(9419), 1432–1437.
CAS
Article
Google Scholar
Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders–how to make it work. Nature Medicine, 10, 42–50.
Lindvall, O., & Kokaia, Z. (2006). Stem cells for the treatment of neurological disorders. Nature, 441(7097), 1094–1096.
CAS
PubMed
Article
Google Scholar
Amariglio, N., Hirshberg, A., Scheithauer, B. W., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6(2), e1000029.
PubMed
PubMed Central
Article
CAS
Google Scholar
Weiden, P. L., Flournoy, N., Thomas, E. D., et al. (1979). Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. New England Journal of Medicine, 300(19), 1068–1073.
CAS
PubMed
Article
Google Scholar
Slavin, S., Or, R., Naparstek, E., et al. (1988). Cellular-mediated immunotherapy of leukemia in conjunction with autologous and allogeneic bone marrow transplantation in experimental animals and man. Blood, 72(suppl 1), 407.
Google Scholar
Kolb, H., Mittermuller, J., Clemm, C., et al. (1990). Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood, 76(12), 2462–2465.
CAS
PubMed
Google Scholar
Van Besien, K., De Lima, M., Giralt, S., et al. (1997). Management of lymphoma recurrence after allogeneic transplantation: the relevance of graft-versus-lymphoma effect. Bone Marrow Transplantation, 19(10), 977–982.
PubMed
Article
Google Scholar
Afessa, B., Litzow, M., & Tefferi, A. (2001). Bronchiolitis obliterans and other late onset non-infectious pulmonary complications in hematopoietic stem cell transplantation. Bone Marrow Transplantation, 28(5), 425.
CAS
PubMed
Article
Google Scholar
Qin, Y., Guan, J., & Zhang, C. (2014). Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgraduate Medical Journal, 90(1069), 643–647.
CAS
PubMed
PubMed Central
Article
Google Scholar
Studeny, M., Marini, F. C., Dembinski, J. L., et al. (2004). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. Journal of the National Cancer Institute, 96(21), 1593–1603.
CAS
PubMed
Article
Google Scholar
Stagg, J., Pommey, S., Eliopoulos, N., et al. (2006). Interferon-γ-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood, 107(6), 2570–2577.
CAS
PubMed
Article
Google Scholar
Ye, Z., Wang, Y., Xie, H.-Y., et al. (2008). Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+ CD25+ regulatory T cells. Hepatobiliary & Pancreatic Diseases International, 7(6), 608–614.
Google Scholar
Di Ianni, M., Del Papa, B., De Ioanni, M., et al. (2008). Mesenchymal cells recruit and regulate T regulatory cells. Experimental Hematology, 36(3), 309–318.
PubMed
Article
CAS
Google Scholar
Joo, S.-Y., Cho, K.-A., Jung, Y.-J., et al. (2010). Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner. Cytotherapy, 12(3), 361–370.
CAS
PubMed
Article
Google Scholar
Madec, A., Mallone, R., Afonso, G., et al. (2009). Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 52(7), 1391–1399.
CAS
PubMed
Article
Google Scholar
Keating, A. (2008). How do mesenchymal stromal cells suppress T cells? Cell Stem Cell, 2(2), 106–108.
CAS
PubMed
Article
Google Scholar
Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.
PubMed
Article
Google Scholar
Ren, G., Zhang, L., Zhao, X., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150.
CAS
PubMed
Article
Google Scholar
Meisel, R., Zibert, A., Laryea, M., et al. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2, 3-dioxygenase–mediated tryptophan degradation. Blood, 103(12), 4619–4621.
CAS
PubMed
Article
Google Scholar
Marigo, I., & Dazzi, F. (2011). The immunomodulatory properties of mesenchymal stem cells. In Seminars in immunopathology. Springer. 593.
Dazzi, F., & Marelli-Berg., F. M. (2008). Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells. European Journal of Immunology, 38(6), 1479–1482.
CAS
PubMed
Article
Google Scholar
Krampera, M., Cosmi, L., Angeli, R., et al. (2006). Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398.
CAS
PubMed
Article
Google Scholar
Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology, 36(4), 568–584.
CAS
Article
Google Scholar
Mahmood, A., Lu, D., Lu, M., et al. (2003). Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery, 53(3), 697–703.
PubMed
Article
Google Scholar
Ryan, J., Barry, F., Murphy, J., et al. (2007). Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical & Experimental Immunology, 149(2), 353–363.
CAS
Article
Google Scholar
Ryan, J. M., Barry, F. P., Murphy, J. M., et al. (2005). Mesenchymal stem cells avoid allogeneic rejection. Journal of Inflammation, 2(1), 8.
PubMed
PubMed Central
Article
CAS
Google Scholar
George, J. C. (2010). Stem cell therapy in acute myocardial infarction: a review of clinical trials. Translational Research, 155(1), 10–19.
CAS
PubMed
Article
Google Scholar
Harris, D. T. (2014). Stem cell banking for regenerative and personalized medicine. Biomedicines, 2(1), 50–79.
PubMed
PubMed Central
Article
Google Scholar
Bang, O. Y., Lee, J. S., Lee, P. H., et al. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 57(6), 874–882.
PubMed
Article
Google Scholar
Prockop, D. J. (2017). The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy, 19(1), 1–8.
PubMed
Article
Google Scholar
Bang, O. Y., Kim, E. H., Cha, J. M., et al. (2016). Adult stem cell therapy for stroke: challenges and progress. Journal of Stroke, 18(3), 256.
PubMed
PubMed Central
Article
Google Scholar
Steinbeck, J. A., & Studer, L. (2015). Moving stem cells to the clinic: potential and limitations for brain repair. Neuron, 86(1), 187–206.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kim, E. H., Kim, D. H., Kim, H. R., et al. (2016). Stroke serum priming modulates characteristics of mesenchymal stromal cells by controlling the expression miRNA-20a. Cell Transplantation, 25(8), 1489–1499.
PubMed
Article
Google Scholar
Choi, Y. J., Li, W. Y., Moon, G. J., et al. (2010). Enhancing trophic support of mesenchymal stem cells by ex vivo treatment with trophic factors. Journal of the Neurological Sciences, 298(1), 28–34.
CAS
PubMed
Article
Google Scholar
Efimenko, A. Y., Kochegura, T. N., Akopyan, Z. A., et al. (2015). Autologous stem cell therapy: how aging and chronic diseases affect stem and progenitor cells. BioResearch Open Access, 4(1), 26–38.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hu, F., Wang, X., Liang, G., et al. (2013). Effects of epidermal growth factor and basic fibroblast growth factor on the proliferation and osteogenic and neural differentiation of adipose-derived stem cells. Cellular Reprogramming, 15(3), 224–232.
CAS
PubMed
PubMed Central
Google Scholar
Mylotte, L. A., Duffy, A. M., Murphy, M., et al. (2008). Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells, 26(5), 1325–1336.
CAS
PubMed
Article
Google Scholar
McGinley, L., McMahon, J., Strappe, P., et al. (2011). Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Research & Therapy, 2(2), 12.
CAS
Article
Google Scholar
Kumar Bokara, K., Suresh Oggu, G., Josyula Vidyasagar, A., et al. (2014). Modulation of stem cell differentiation by the influence of nanobiomaterials/carriers. Current Stem Cell Research & Therapy, 9(6), 458–468.
Article
Google Scholar
Meisel, R., Brockers, S., Heseler, K., et al. (2011). Human but not murine multipotent mesenchymal stromal cells exhibit broad-spectrum antimicrobial effector function mediated by indoleamine 2, 3-dioxygenase. Leukemia, 25(4), 648–654.
CAS
PubMed
Article
Google Scholar
Ljungman, P., De La Camara, R., Cordonnier, C., et al. (2008). Management of CMV, HHV-6, HHV-7 and Kaposi-sarcoma herpesvirus (HHV-8) infections in patients with hematological malignancies and after SCT. Bone Marrow Transplantation, 42(4), 227–240.
CAS
PubMed
Article
Google Scholar
Tan, J., Wu, W., Xu, X., et al. (2012). Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA, 307(11), 1169–1177.
CAS
PubMed
Article
Google Scholar
Khera, M., Albersen, M., & Mulhall, J. P. (2015). Mesenchymal stem cell therapy for the treatment of erectile dysfunction. The Journal of Sexual Medicine, 12(5), 1105–1106.
PubMed
Article
Google Scholar
Gehl, J. (2003). Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiologica, 177(4), 437–447.
CAS
Article
Google Scholar
Gresch, O., Engel, F. B., Nesic, D., et al. (2004). New non-viral method for gene transfer into primary cells. Methods, 33(2), 151–163.
CAS
PubMed
Article
Google Scholar
Otani, K., Yamahara, K., Ohnishi, S., et al. (2009). Nonviral delivery of siRNA into mesenchymal stem cells by a combination of ultrasound and microbubbles. Journal of Controlled Release, 133(2), 146–153.
CAS
PubMed
Article
Google Scholar
Sanchez-Antequera, Y., Mykhaylyk, O., van Til, N. P., et al. (2011). Magselectofection: an integrated method of nanomagnetic separation and genetic modification of target cells. Blood, 117(16), e171-e181.
Article
CAS
Google Scholar
Kim, H.-J., & Im, G.-I. (2011). Electroporation-mediated transfer of SOX trio genes (SOX-5, SOX-6, and SOX-9) to enhance the chondrogenesis of mesenchymal stem cells. Stem Cells and Development, 20(12), 2103–2114.
CAS
PubMed
Article
Google Scholar
Ferreira, E., Potier, E., Vaudin, P., et al. (2012). Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer. European Cells & Materials, 24(1), 18–28.
CAS
Article
Google Scholar
Park, S. A., Ryu, C. H., Kim, S. M., et al. (2011). CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas. International Journal of Oncology, 38(1), 97.
CAS
PubMed
Google Scholar
Ryser, M. F., Ugarte, F., Thieme, S., et al. (2008). mRNA transfection of CXCR4-GFP fusion—simply generated by PCR—results in efficient migration of primary human mesenchymal stem cells. Tissue Engineering Part C: Methods, 14(3), 179–184.
CAS
Article
Google Scholar
Sheyn, D., Pelled, G., Zilberman, Y., et al. (2008). Nonvirally engineered porcine adipose tissue-derived stem cells: use in posterior spinal fusion. Stem Cells, 26(4), 1056–1064.
PubMed
Article
Google Scholar
Rome, C., Deckers, R., & Moonen, C. T. (2008). The use of ultrasound in transfection and transgene expression. Molecular imaging II, hand book of experimental pharmacology. Springer.
Nakashima, M., Tachibana, K., Iohara, K., et al. (2003). Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Human Gene Therapy, 14(6), 591–597.
CAS
PubMed
Article
Google Scholar
Li, W., Ma, N., Ong, L. L., et al. (2008). Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. The Journal of Gene Medicine, 10(8), 897–909.
CAS
PubMed
Article
Google Scholar
Li, W., Nesselmann, C., Zhou, Z., et al. (2007). Gene delivery to the heart by magnetic nanobeads. Journal of Magnetism and Magnetic Materials, 311(1), 336–341.
CAS
Article
Google Scholar
Bharali, D. J., Klejbor, I., Stachowiak, E. K., et al. (2005). Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11539–11544.
Gao, L., Nie, L., Wang, T., et al. (2006). Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem, 7(2), 239–242.
CAS
PubMed
Article
Google Scholar
Guo, S., Huang, Y., Jiang, Q., et al. (2010). Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano, 4(9), 5505–5511.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tan, W. B., Jiang, S., & Zhang, Y. (2007). Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 28(8), 1565–1571.
CAS
PubMed
Article
Google Scholar
Wu, H. C., Wang, T. W., Bohn, M. C., et al. (2010). Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Advanced Functional Materials, 20(1), 67–77.
CAS
Article
Google Scholar
Kim, T. H., Kim, M., Eltohamy, M., et al. (2013). Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. Journal of Biomedical Materials Research Part A, 101(6), 1651–1660.
PubMed
Article
CAS
Google Scholar
Lin, C., Wang, Y., Lai, Y., et al. (2011). Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly (lactic-co-glycolic acid) for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 83(2), 367–375.
CAS
PubMed
Article
Google Scholar
Baik, K. Y., Park, S. Y., Heo, K., et al. (2011). Carbon nanotube monolayer cues for osteogenesis of mesenchymal stem cells. Small, 7(6), 741–745.
CAS
PubMed
PubMed Central
Article
Google Scholar
Bhattacharya, M., Wutticharoenmongkol-Thitiwongsawet, P., Hamamoto, D. T., et al. (2011). Bone formation on carbon nanotube composite. Journal of Biomedical Materials Research Part A, 96(1), 75–82.
PubMed
Article
CAS
Google Scholar
Cellot, G., Toma, F. M., Varley, Z. K., et al. (2011). Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial–tissue interactions. Journal of Neuroscience, 31(36), 12945–12953.
CAS
PubMed
Article
Google Scholar
Fabbro, A., Villari, A., Laishram, J., et al. (2012). Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano, 6(3), 2041–2055.
CAS
PubMed
Article
Google Scholar
Joydeep, D., Choi, Y.-J., Yasuda, H., et al. (2016). Efficient delivery of C/EBP beta gene into human mesenchymal stem cells via polyethylenimine-coated gold nanoparticles enhances adipogenic differentiation. Scientific Reports, 6, 37480.
Cao, X., Deng, W., Wei, Y., et al. (2011). Encapsulation of plasmid DNA in calcium phosphate nanoparticles: stem cell uptake and gene transfer efficiency. International Journal of NanoMedicine, 6, 3335–3349.
CAS
PubMed
PubMed Central
Google Scholar
Cho, J. W., Lee, C. Y., & Ko, Y. (2012). Therapeutic potential of mesenchymal stem cells overexpressing human forkhead box A2 gene in the regeneration of damaged liver tissues. Journal of Gastroenterology and Hepatology, 27(8), 1362–1370.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jeon, S. Y., Park, J. S., Yang, H. N., et al. (2012). Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs. Biomaterials, 33(17), 4413–4423.
CAS
PubMed
Article
Google Scholar
Kim, N. Y., Choi, Y. B., Kang, C. I., et al. (2010). An hydrophobically modified arginine peptide vector system effectively delivers DNA into human mesenchymal stem cells and maintains transgene expression with differentiation. The Journal of Gene Medicine, 12(9), 779–789.
CAS
PubMed
Article
Google Scholar
Thakor, D. K., Teng, Y. D., Obata, H., et al. (2010). Nontoxic genetic engineering of mesenchymal stem cells using serum-compatible pullulan-spermine/DNA anioplexes. Tissue Engineering Part C: Methods, 17(2), 131–144.
Article
CAS
Google Scholar
Jordan, M., & Wurm, F. (2004). Transfection of adherent and suspended cells by calcium phosphate. Methods, 33(2), 136–143.
CAS
PubMed
Article
Google Scholar
Masotti, A., Mossa, G., Cametti, C., et al. (2009). Comparison of different commercially available cationic liposome–DNA lipoplexes: parameters influencing toxicity and transfection efficiency. Colloids and Surfaces B: Biointerfaces, 68(2), 136–144.
CAS
PubMed
Article
Google Scholar
Ruponen, M., Rönkkö, S., Honkakoski, P., et al. (2001). Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes. Journal of Biological Chemistry, 276(36), 33875–33880.
CAS
PubMed
Article
Google Scholar
Rejman, J., Conese, M., & Hoekstra, D. (2006). Gene transfer by means of lipo-and polyplexes: role of clathrin and caveolae-mediated endocytosis. Journal of Liposome Research, 16(3), 237–247.
CAS
PubMed
Article
Google Scholar
Simões, S., Slepushkin, V., Pires, P., et al. (1999). Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Therapy, 6(11), 1798–1807.
PubMed
Article
Google Scholar
Wen, Y., Guo, Z., Du, Z., et al. (2012). Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials, 33(32), 8111–8121.
CAS
PubMed
Article
Google Scholar
Li, W., Ma, N., Ong, L. L., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25(8), 2118–2127.
CAS
PubMed
Article
Google Scholar
Kim, H. H., Choi, H. S., Yang, J. M., et al. (2007). Characterization of gene delivery in vitro and in vivo by the arginine peptide system. International Journal of Pharmaceutics, 335(1), 70–78.
CAS
PubMed
Article
Google Scholar
Bachrach, U. (2005). Naturally occurring polyamines: interaction with macromolecules. Current Protein and Peptide Science, 6(6), 559–566.
CAS
PubMed
Article
Google Scholar
Azzam, T., Raskin, A., Makovitzki, A., et al. (2002). Cationic polysaccharides for gene delivery. Macromolecules, 35(27), 9947–9953.
CAS
Article
Google Scholar
Han, S.-W., Nakamura, C., Kotobuki, N., et al. (2008). High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy. Nanomedicine: Nanotechnology, Biology and Medicine, 4(3), 215–225.
CAS
Article
Google Scholar
Subramanian, A., Ranganathan, P., & Diamond, S. L. (1999). Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nature Biotechnology, 17(9), 873–877.
CAS
PubMed
Article
Google Scholar
Vallhov, H., Gabrielsson, S., Strømme, M., et al. (2007). Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Letters, 7(12), 3576–3582.
CAS
PubMed
Article
Google Scholar
Simões, S., Filipe, A., Faneca, H., et al. (2005). Cationic liposomes for gene delivery. Expert Opinion on Drug Delivery, 2(2), 237–254.
PubMed
Article
Google Scholar
Wang, W., Xu, X., Li, Z., et al. (2014). Genetic engineering of mesenchymal stem cells by non-viral gene delivery. Clinical Hemorheology and Microcirculation, 58(1), 19–48.
PubMed
Google Scholar
Nowakowski, A., Andrzejewska, A., Janowski, M., et al. (2013). Genetic engineering of stem cells for enhanced therapy. Acta Neurobiologiae Experimentalis, 73(1), 1–18.
PubMed
Google Scholar
Dahlberg, J. (1987). An overview of retrovirus replication and classification. Advances in Veterinary Science and Comparative Medicine, 32, 1–35.
Google Scholar
Aiuti, A., Cattaneo, F., Galimberti, S., et al. (2009). Gene therapy for immunodeficiency due to adenosine deaminase deficiency. New England Journal of Medicine, 360(5), 447–458.
CAS
PubMed
Article
Google Scholar
Laker, C., Meyer, J., Schopen, A., et al. (1998). Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. Journal of Virology, 72(1), 339–348.
CAS
PubMed
PubMed Central
Google Scholar
Challita, P.-M., & Kohn, D. B. (1994). Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proceedings of the National Academy of Sciences, 91(7), 2567–2571.
Hacein-Bey-Abina, S., Hauer, J., Lim, A., et al. (2010). Efficacy of gene therapy for X-linked severe combined immunodeficiency. New England Journal of Medicine, 363(4), 355–364.
CAS
PubMed
PubMed Central
Article
Google Scholar
Huang, S., & Terstappen, L. (1994). Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38-hematopoietic stem cells. Blood, 83(6), 1515–1526.
CAS
PubMed
Google Scholar
Naldini, L., Blomer, U., Gallay, P., et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272(5259), 263.
CAS
PubMed
Article
Google Scholar
Hu, J., Lang, Y., Zhang, T., et al. (2016). Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats. Neuroscience, 328, 40–49.
CAS
PubMed
Article
Google Scholar
Xiang, Q., Hong, D., Liao, Y., et al. (2016). Overexpression of gremlin1 in mesenchymal stem cells improves hindlimb ischemia in mice by enhancing cell survival. Journal of Cellular Physiology, 232(5), 996–1007.
PubMed
Article
CAS
Google Scholar
De Melo, S. M., Bittencourt, S., Ferrazoli, E. G., et al. (2015). The anti-tumor effects of adipose tissue mesenchymal stem cell transduced with HSV-Tk gene on U-87-driven brain tumor. PLoS One, 10(6), e0128922.
Cartier, N., & Aubourg, P. (2010). Hematopoietic stem cell transplantation and hematopoietic stem cell gene therapy in X-Linked adrenoleukodystrophy. Brain Pathology, 20(4), 857–862.
PubMed
Article
Google Scholar
Cavazzana-Calvo, M., Payen, E., Negre, O., et al. (2010). Transfusion independence and HMGA2 activation after gene therapy of human [bgr]-thalassaemia. Nature, 467(7313), 318–322.
CAS
PubMed
PubMed Central
Article
Google Scholar
Aiuti, A., Biasco, L., Scaramuzza, S., et al. (2013). Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science, 341(6148), 1233151.
PubMed
PubMed Central
Article
CAS
Google Scholar
Biffi, A., Montini, E., Lorioli, L., et al. (2013). Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science, 341(6148), 1233158.
PubMed
Article
CAS
Google Scholar
Tomás, H. A., Rodrigues, A. F., Alves, P. M., et al. (2013). Lentiviral gene therapy vectors: Challenges and future directions. InTech.
Ke, J., Zheng, L., & Cheung, L. (2011). Orthopaedic gene therapy using recombinant adeno-associated virus vectors. Archives of Oral Biology, 56(7), 619–628.
CAS
PubMed
Article
Google Scholar
Zaiss, A.-K., Liu, Q., Bowen, G. P., et al. (2002). Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. Journal of Virology, 76(9), 4580–4590.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wright, J. F. (2009). Transient transfection methods for clinical adeno-associated viral vector production. Human Gene Therapy, 20(7), 698–706.
CAS
PubMed
PubMed Central
Article
Google Scholar
Frisch, J., Venkatesan, J. K., Rey-Rico, A., et al. (2014). Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Research & Therapy, 5(4), 103.
Article
Google Scholar
Frisch, J., Venkatesan, J. K., Rey-Rico, A., et al. (2014). Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-β via recombinant adeno-associated viral vectors. Human Gene Therapy, 25(12), 1050–1060.
CAS
PubMed
Article
Google Scholar
Venkatesan, J. K., Ekici, M., Madry, H., et al. (2012). SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Research & Therapy, 3(3), 22.
Article
Google Scholar
Tao, K., Frisch, J., Rey-Rico, A., et al. (2016). Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Research & Therapy, 7(1), 20.
Article
CAS
Google Scholar
Zanotti, L., Angioni, R., Calì, B., et al. (2016). Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia, 30, 1143–1154.
Liu, Z., Wang, C., Wang, X., et al. (2015). Therapeutic effects of transplantation of as-mir-937-expressing mesenchymal stem cells in murine model of alzheimer’s disease. Cellular Physiology and Biochemistry, 37(1), 321–330.
PubMed
Article
CAS
Google Scholar
Nayak, S., & Herzog, R. W. (2010). Progress and prospects: immune responses to viral vectors. Gene Therapy, 17(3), 295–304.
CAS
PubMed
Article
Google Scholar
Yin, T., He, S., Su, C., et al. (2015). Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia. Molecular Medicine Reports, 12(4), 5093–5099.
PubMed
PubMed Central
Article
CAS
Google Scholar
Kanehira, M., Xin, H., Hoshino, K., et al. (2007). Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Therapy, 14(11), 894–903.
CAS
PubMed
Article
Google Scholar
Gopalakrishnan, A. K., Pandit, H., Metkari, S., et al. (2016). Adenoviral vector encoding soluble Flt-1 engineered human endometrial mesenchymal stem cells effectively regress endometriotic lesions in NOD/SCID mice. Gene Therapy, 23(7), 580–591.
Article
CAS
Google Scholar
Ryu, C. H., Park, S.-H., Park, S. A., et al. (2011). Gene therapy of intracranial glioma using interleukin 12–secreting human umbilical cord blood–derived mesenchymal stem cells. Human Gene Therapy, 22(6), 733–743.
CAS
PubMed
Article
Google Scholar
Sun, X. L., Xu, Z. M., Ke, Y. Q., et al. (2011). Molecular targeting of malignant glioma cells with an EphA2-specific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells. Cancer Letters, 312(2), 168–177.
CAS
PubMed
Article
Google Scholar
Yang, Y., Nunes, F. A., Berencsi, K., et al. (1994). Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proceedings of the National Academy of Sciences, 91(10), 4407–4411.
Treacy, O., Ryan, A. E., Heinzl, T., et al. (2012). Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One, 7(8), e42662.
McCarter, S., Scott, J., Lee, P., et al. (2003). Cotransfection of heme oxygenase-1 prevents the acute inflammation elicited by a second adenovirus. Gene Therapy, 10(19), 1629–1635.
CAS
PubMed
Article
Google Scholar
Alba, R., Bosch, A., & Chillon, M. (2005). Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Therapy, 12, S18-S27.
Article
CAS
Google Scholar
Lamb, A. (1996). Paramyxoviridae: the virus and their replication. Fields Virology.
Knaän-Shanzer, S., van de Watering, M. J., van der Velde, I., et al. (2005). Endowing human adenovirus serotype 5 vectors with fiber domains of species B greatly enhances gene transfer into human mesenchymal stem cells. Stem Cells, 23(10), 1598–1607.
PubMed
Article
Google Scholar
Zaldumbide, A., Carlotti, F., Gonçalves, M. A., et al. (2012). Adenoviral vectors stimulate glucagon transcription in human mesenchymal stem cells expressing pancreatic transcription factors. PLoS One, 7(10), e48093.
Hu, Y. C. (2006). Baculovirus vectors for gene therapy. Advances in Virus Research, 68, 287–320.
CAS
PubMed
Article
Google Scholar
Kost, T. A., Condreay, J. P., & Jarvis, D. L. (2005). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology, 23(5), 567–575.
CAS
PubMed
PubMed Central
Article
Google Scholar
Merrihew, R. V., Clay, W. C., Condreay, J. P., et al. (2001). Chromosomal integration of transduced recombinant baculovirus DNA in mammalian cells. Journal of Virology, 75(2), 903–909.
CAS
PubMed
PubMed Central
Article
Google Scholar
Wang, K. C., Wu, J. C., Chung, Y. C., et al. (2005). Baculovirus as a highly efficient gene delivery vector for the expression of hepatitis delta virus antigens in mammalian cells. Biotechnology and Bioengineering, 89(4), 464–473.
CAS
PubMed
Article
Google Scholar
Zeng, J., Du, J., Lin, J., et al. (2009). High-efficiency transient transduction of human embryonic stem cell–derived neurons with baculoviral vectors. Molecular Therapy, 17(9), 1585–1593.
CAS
PubMed
PubMed Central
Article
Google Scholar
Chen, G. Y., Pang, D. P., Hwang, S. M., et al. (2012). A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 33(2), 418–427.
PubMed
Article
CAS
Google Scholar
Lee, E. X., Lam, D. H., Wu, C., et al. (2011). Glioma gene therapy using induced pluripotent stem cell derived neural stem cells. Molecular Pharmaceutics, 8(5), 1515–1524.
CAS
PubMed
Article
Google Scholar
Chen, H. C., Chang, Y. H., Chuang, C. K., et al. (2009). The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials, 30(4), 674–681.
CAS
PubMed
Article
Google Scholar
Sung, L. Y., Lo, W. H., Chiu, H. Y., et al. (2007). Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials, 28(23), 3437–3447.
CAS
PubMed
Article
Google Scholar
Bak, X. Y., Dang, H. L., Yang, J., et al. (2011). Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Human Gene Therapy, 22(11), 1365–1377.
CAS
PubMed
Article
Google Scholar
Chuang, C. K., Lin, K. J., Lin, C. Y., et al. (2009). Xenotransplantation of human mesenchymal stem cells into immunocompetent rats for calvarial bone repair. Tissue Engineering Part A, 16(2), 479–488.
Article
CAS
Google Scholar
Lu, C. H., Lin, K. J., Chiu, H. Y., et al. (2012). Improved chondrogenesis and engineered cartilage formation from TGF-β3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Engineering Part A, 18(19–20), 2114–2124.
CAS
PubMed
Article
Google Scholar
Liao, J.-C. (2016). Bone marrow mesenchymal stem cells expressing baculovirus-engineered bone morphogenetic protein-7 enhance rabbit posterolateral fusion. International Journal of Molecular Sciences, 17(7), 1073.
Liao, J.-C. (2016). Cell therapy using bone marrow-derived stem cell overexpressing BMP-7 for degenerative discs in a rat tail disc model. International Journal of Molecular Sciences, 17(2), 147.
Fu, T.-S., Chang, Y.-H., Wong, C.-B., et al. (2015). Mesenchymal stem cells expressing baculovirus-engineered BMP-2 and VEGF enhance posterolateral spine fusion in a rabbit model. The Spine Journal, 15(9), 2036–2044.
PubMed
Article
Google Scholar
Bak, X., Yang, J., & Wang, S. (2010). Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy. Cancer Gene Therapy, 17(10), 721–729.
CAS
PubMed
Article
Google Scholar
Harrison, R. L., & Jarvis, D. L. (2006). Protein N-glycosylation in the baculovirus–insect cell expression system and engineering of insect cells to produce “Mammalianized” recombinant glycoproteins. Advances in Virus Research, 68, 159–191.
CAS
PubMed
Article
Google Scholar
Manservigi, R., Argnani, R., & Marconi, P. (2010). HSV recombinant vectors for gene therapy. The Open Virology Journal, 4(1), 123–156.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang, G., Kobayashi, T., Kamitani, W., et al. (2003). Borna disease virus phosphoprotein represses p53-mediated transcriptional activity by interference with HMGB1. Journal of Virology, 77(22), 12243–12251.
CAS
PubMed
PubMed Central
Article
Google Scholar
Leoni, V., Gatta, V., Palladini, A., et al. (2015). Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget, 6(33), 34774.
PubMed
PubMed Central
Google Scholar
Breitbach, C. J., Burke, J., Jonker, D., et al. (2011). Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature, 477(7362), 99–102.
CAS
PubMed
Article
Google Scholar
Heo, J., Reid, T., Ruo, L., et al. (2013). Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature Medicine, 19(3), 329–336.
CAS
PubMed
PubMed Central
Article
Google Scholar
Park, B. H., Hwang, T., Liu, T. C., et al. (2008). Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. The Lancet Oncology, 9(6), 533–542.
CAS
PubMed
Article
Google Scholar
De la Torre, J. (1994). Molecular biology of borna disease virus: prototype of a new group of animal viruses. Journal of Virology, 68(12), 7669.
PubMed
PubMed Central
Google Scholar
Briese, T., de La Torre, J. C., Lewis, A., et al. (1992). Borna disease virus, a negative-strand RNA virus, transcribes in the nucleus of infected cells. Proceedings of the National Academy of Sciences, 89(23), 11486–11489.
Briese, T., Schneemann, A., Lewis, A. J., et al. (1994). Genomic organization of Borna disease virus. Proceedings of the National Academy of Sciences, 91(10), 4362–4366.
Schneemann, A., Schneider, P. A., Lamb, R. A., et al. (1995). The remarkable coding strategy of Borna disease virus: a new member of the nonsegmented negative strand RNA viruses. Virology, 210(1), 1–8.
CAS
PubMed
Article
Google Scholar
Ikeda, Y., Makino, A., Matchett, W. E., et al. (2016). A novel intranuclear RNA vector system for long-term stem cell modification. Gene Therapy, 23(3), 256–262.
CAS
PubMed
Article
Google Scholar
McCarty, D. M. (2008). Self-complementary AAV vectors; advances and applications. Molecular Therapy, 16(10), 1648–1656.
CAS
PubMed
Article
Google Scholar
Gall, J., Kass-Eisler, A., Leinwand, L., et al. (1996). Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. Journal of Virology, 70(4), 2116–2123.
CAS
PubMed
PubMed Central
Google Scholar
Ito, H., Goater, J., Tiyapatanaputi, P., et al. (2004). Light-activated gene transduction of recombinant adeno-associated virus in human mesenchymal stem cells. Gene Therapy, 11(1), 34–41.
CAS
PubMed
Article
Google Scholar
Li, M., Jayandharan, G. R., Li, B., et al. (2010). High-efficiency transduction of fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential use in cellular therapy. Human Gene Therapy, 21(11), 1527–1543.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pang, Z. P., Yang, N., Vierbuchen, T., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476(7359), 220–223.
CAS
PubMed
PubMed Central
Google Scholar
Graf, T., & Enver, T. (2009). Forcing cells to change lineages. Nature, 462(7273), 587–594.
CAS
PubMed
Article
Google Scholar
Lee, A. S., Tang, C., Rao, M. S., et al. (2013). Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Medicine, 19(8), 998–1004.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang, Y., Pak, C., Han, Y., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785–798.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ramos, C. A., Asgari, Z., Liu, E., et al. (2010). An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells, 28(6), 1107–1115.
CAS
PubMed
PubMed Central
Article
Google Scholar
Morris, S. A., Cahan, P., Li, H., et al. (2014). Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell, 158(4), 889–902.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rombouts, W., & Ploemacher, R. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 17(1), 160–170.
CAS
PubMed
Article
Google Scholar
Banfi, A., Muraglia, A., Dozin, B., et al. (2000). Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Experimental Hematology, 28(6), 707–715.
CAS
PubMed
Article
Google Scholar
Baron, F., Lechanteur, C., Willems, E., et al. (2010). Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biology of Blood and Marrow Transplantation, 16(6), 838–847.
PubMed
Article
Google Scholar
Zhou, H., Guo, M., Bian, C., et al. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412.
CAS
PubMed
Article
Google Scholar
Kuzmina, L. A., Petinati, N. A., Parovichnikova, E. N., et al. (2011). Multipotent mesenchymal stromal cells for the prophylaxis of acute graft-versus-host disease—a phase II study. Stem Cells International, 2012(2012), 8.
Google Scholar
Miletic, H., Fischer, Y., Litwak, S., et al. (2007). Bystander killing of malignant glioma by bone marrow–derived tumor-infiltrating progenitor cells expressing a suicide gene. Molecular Therapy, 15(7), 1373–1381.
CAS
PubMed
Article
Google Scholar
Cavarretta, I. T., Altanerova, V., Matuskova, M., et al. (2010). Adipose tissue–derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Molecular Therapy, 18(1), 223–231.
CAS
PubMed
Article
Google Scholar
Van Eekelen, M., Sasportas, L., Kasmieh, R., et al. (2010). Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene, 29(22), 3185–3195.
PubMed
PubMed Central
Article
CAS
Google Scholar
Scholefield, J., & Weinberg, M. S. (2016). The application of CRISPR/Cas9 technologies and therapies in stem cells. Current Stem Cell Reports, 2(2), 95–103.
CAS
Article
Google Scholar
Ran, F. A., Hsu, P. D., Wright, J., et al. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ran, F. A., Hsu, P. D., Lin, C.-Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154(6), 1380–1389.
CAS
PubMed
PubMed Central
Article
Google Scholar
Webber, B. R., Osborn, M. J., McElroy, A. N., et al. (2016). CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysis bullosa. NPJ Regenerative Medicine, 1
, 16014.
Cong, L., Ran, F. A., Cox, D., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, T., Shen, J. K., Li, Z., et al. (2016). Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma. Cancer Letters, 373(1), 109–118.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cho, S. W., Kim, S., Kim, Y., et al. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 24(1), 132–141.
CAS
PubMed
PubMed Central
Article
Google Scholar
Pattanayak, V., Lin, S., Guilinger, J. P., et al. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 31(9), 839–843.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kleinstiver, B. P., Pattanayak, V., Prew, M. S., et al. (2016). High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 529(7587), 490–495.
CAS
PubMed
PubMed Central
Article
Google Scholar
Slaymaker, I. M., Gao, L., Zetsche, B., et al. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science, 351(6268), 84–88.
CAS
PubMed
Article
Google Scholar
Albitar, A., Rohani, B., Will, B., et al. (2017). The application of CRISPR/Cas technology to efficiently model complex cancer genomes in stem cells. Journal of Cellular Biochemistry.
Blitz, I. L., Biesinger, J., Xie, X., et al. (2013). Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis, 51(12), 827–834.
Jao, L.E., Wente, S. R., & Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proceedings of the National Academy of Sciences, 110(34), 13904–13909.
Wang, H., Yang, H., Shivalila, C. S., et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153(4), 910–918.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sokolik, C., Liu, Y., Bauer, D., et al. (2015). Transcription factor competition allows embryonic stem cells to distinguish authentic signals from noise. Cell Systems, 1(2), 117–129.
CAS
PubMed
PubMed Central
Article
Google Scholar
Delavar, H. M., Karamzadeh, A., & Pahlavanneshan, S. (2016). Shining light on the sprout of life: optogenetics applications in stem cell research and therapy. The Journal of Membrane Biology, 249(3), 215–220.
Article
CAS
Google Scholar
Fenno, L. E., Mattis, J., Ramakrishnan, C., et al. (2014). Targeting cells with single vectors using multiple-feature Boolean logic. Nature Methods, 11(7), 763–772.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, X., Ramirez, S., Pang, P. T., et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484(7394), 381–385.
CAS
PubMed
PubMed Central
Article
Google Scholar
Guru, A., Post, R. J., Ho, Y. Y., et al. (2015). Making sense of optogenetics. International Journal of Neuropsychopharmacology, 18(11), 79.
Article
CAS
Google Scholar
Pliss, A., Ohulchanskyy, T. Y., Chen, G., et al. (2017). Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics, 4(4), 806–814.
CAS
Article
Google Scholar
Meyer, U. A. (2002). Introduction to pharmacogenomics: promises, opportunities, and limitations. Pharmacogenomics: The search for individualized therapies, pp. 1–8.
Langman, L. J., Nesher, L., Shah, D. P., et al. (2016). Challenges in determining genotypes for pharmacogenetics in allogeneic hematopoietic cell transplant recipients. The Journal of Molecular Diagnostics, 18(5), 638–642.
CAS
PubMed
PubMed Central
Article
Google Scholar
Licinio, J., & Wong, M. L. (2009). Pharmacogenomics: The search for individualized therapies. Wiley.
Al-Mahayri, Z. N., & Patrinos, G. P., & Ali, R. (2017). Pharmacogenomics in pediatric acute lymphoblastic leukemia: promises and limitations. The Journal of Molecular Diagnostics, 18(7), 687–699.
Van Hassselt, J. C., & Iyengar, R. (2017). Systems pharmacology-based identification of pharmacogenomic determinants of adverse drug reactions using human iPSC-derived cell lines. Current Opinion in Systems Biology, 4, 9–15.
Article
Google Scholar