Advertisement

Stem Cell Reviews and Reports

, Volume 13, Issue 5, pp 567–574 | Cite as

Lung as a Niche for Hematopoietic Progenitors

  • Isabella Borges
  • Isadora Sena
  • Patrick Azevedo
  • Julia Andreotti
  • Viviani Almeida
  • Ana Paiva
  • Gabryella Santos
  • Daniel Guerra
  • Pedro Prazeres
  • Luiza Lousado Mesquita
  • Luanny Souto de Barros Silva
  • Caroline Leonel
  • Akiva Mintz
  • Alexander Birbrair
Article

Abstract

Platelets are released from megakaryocytes. The bone marrow has been proposed to be the major site where this process occurs. Lefrançais et al. (2017) using state-of-the-art techniques including two-photon microscopy, in vivo lineage-tracing technologies, and sophisticated lung transplants reveal that the lung is also a primary site for platelet biogenesis. Strikingly, lung megakaryocytes can completely reconstitute platelet counts in the blood in mice with thrombocytopenia. This study also shows that hematopoietic progenitors, with capacity to repopulate the bone marrow after irradiation, are present in the lungs. This work brings a novel unexpected role for the lung as a niche for hematopoiesis. The emerging knowledge from this research may be important for the treatment of several disorders.

Keywords

Lung Hematopoietic stem cells Origin Niche 

Notes

Acknowledgements

Alexander Birbrair is supported by a grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016); Akiva Mintz is supported by the National Institute of Health (1R01CA179072-01A1) and by the American Cancer Society Mentored Research Scholar grant (124443-MRSG-13-121-01-CDD). We thank Rosa Maria Esteves Arantes for her useful comments.

Compliance with Ethical Standards

Disclosures

The authors indicate no potential conflicts of interest.

References

  1. 1.
    Machlus, K. R., Thon, J. N., & Italiano Jr., J. E. (2014). Interpreting the developmental dance of the megakaryocyte: A review of the cellular and molecular processes mediating platelet formation. British Journal of Haematology, 165(2), 227–236.PubMedCrossRefGoogle Scholar
  2. 2.
    He, S., Ekman, G. J., & Hedner, U. (2005). The effect of platelets on fibrin gel structure formed in the presence of recombinant factor VIIa in hemophilia plasma and in plasma from a patient with Glanzmann thrombasthenia. Journal of Thrombosis and Haemostasis : JTH, 3(2), 272–279.PubMedCrossRefGoogle Scholar
  3. 3.
    Ho-Tin-Noe, B., Demers, M., & Wagner, D. D. (2011). How platelets safeguard vascular integrity. Journal of Thrombosis and Haemostasis : JTH, 9(Suppl 1), 56–65.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bates, E. R., & Lau, W. C. (2005). Controversies in antiplatelet therapy for patients with cardiovascular disease. Circulation, 111(17), e267–e271.PubMedCrossRefGoogle Scholar
  5. 5.
    Laki, K. (1972). Our ancient heritage in blood clotting and some of its consequences. Annals of the New York Academy of Sciences, 202, 297–307.PubMedCrossRefGoogle Scholar
  6. 6.
    Osman, A., Hitzler, W. E., & Provost, P. (2017). The platelets’ perspective to pathogen reduction technologies. Platelets, 1–8.Google Scholar
  7. 7.
    Weyrich, A. S., & Zimmerman, G. A. (2004). Platelets: Signaling cells in the immune continuum. Trends in Immunology, 25(9), 489–495.PubMedCrossRefGoogle Scholar
  8. 8.
    Tesfamariam, B. (2016). Involvement of platelets in tumor cell metastasis. Pharmacology & Therapeutics, 157, 112–119.CrossRefGoogle Scholar
  9. 9.
    Smyth, S. S., McEver, R. P., Weyrich, A. S., Morrell, C. N., Hoffman, M. R., Arepally, G. M., French, P. A., Dauerman, H. L., Becker, R. C., & Platelet Colloquium, P. (2009). Platelet functions beyond hemostasis. Journal of Thrombosis and Haemostasis : JTH, 7(11), 1759–1766.PubMedCrossRefGoogle Scholar
  10. 10.
    Semple, J. W., Italiano Jr., J. E., & Freedman, J. (2011). Platelets and the immune continuum. Nature Reviews Immunology, 11(4), 264–274.PubMedCrossRefGoogle Scholar
  11. 11.
    Davi, G., & Patrono, C. (2007). Platelet activation and atherothrombosis. The New England Journal of Medicine, 357(24), 2482–2494.PubMedCrossRefGoogle Scholar
  12. 12.
    Engelmann, B., & Massberg, S. (2013). Thrombosis as an intravascular effector of innate immunity. Nature Reviews Immunology, 13(1), 34–45.PubMedCrossRefGoogle Scholar
  13. 13.
    Danielli, J. F. (1940). Capillary permeability and oedema in the perfused frog. The Journal of Physiology, 98(1), 109–129.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Robb-Smith, A. H. (1967). Why the platelets were discovered. British Journal of Haematology, 13(4), 618–637.PubMedCrossRefGoogle Scholar
  15. 15.
    Pease, D. C. (1956). An electron microscopic study of red bone marrow. Blood, 11(6), 501–526.PubMedGoogle Scholar
  16. 16.
    Italiano Jr., J. E., Lecine, P., Shivdasani, R. A., & Hartwig, J. H. (1999). Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. The Journal of Cell Biology, 147(6), 1299–1312.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nakeff, A., & Maat, B. (1974). Separation of megakaryocytes from mouse bone marrow by velocity sedimentation. Blood, 43(4), 591–595.PubMedGoogle Scholar
  18. 18.
    Weyrich, A. S., & Zimmerman, G. A. (2013). Platelets in lung biology. Annual Review of Physiology, 75, 569–591.PubMedCrossRefGoogle Scholar
  19. 19.
    Geddis, A. E., & Kaushansky, K. (2007). Immunology. The root of platelet production. Science, 317(5845), 1689–1691.PubMedCrossRefGoogle Scholar
  20. 20.
    Howell, W. H., & Donahue, D. D. (1937). The production of blood platelets in the lungs. The Journal of Experimental Medicine, 65(2), 177–203.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kallinikos-Maniatis, A. (1969). Megakaryocytes and platelets in central venous and arterial blood. Acta Haematologica, 42(6), 330–335.PubMedCrossRefGoogle Scholar
  22. 22.
    Xiao da, W., Yang, M., Yang, J., Hon, K. L., & Fok, F. T. (2006). Lung damage may induce thrombocytopenia. Platelets, 17(5), 347–349.PubMedCrossRefGoogle Scholar
  23. 23.
    Lefrancais, E., Ortiz-Munoz, G., Caudrillier, A., Mallavia, B., Liu, F., Sayah, D. M., Thornton, E. E., Headley, M. B., David, T., Coughlin, S. R., et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544(7648), 105–109.PubMedCrossRefGoogle Scholar
  24. 24.
    Sola-Visner, M. C., Christensen, R. D., Hutson, A. D., & Rimsza, L. M. (2007). Megakaryocyte size and concentration in the bone marrow of thrombocytopenic and nonthrombocytopenic neonates. Pediatric Research, 61(4), 479–484.PubMedCrossRefGoogle Scholar
  25. 25.
    Pang, L., Weiss, M. J., & Poncz, M. (2005). Megakaryocyte biology and related disorders. The Journal of Clinical Investigation, 115(12), 3332–3338.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Long, M. W., Williams, N., & Ebbe, S. (1982). Immature megakaryocytes in the mouse: Physical characteristics, cell cycle status, and in vitro responsiveness to thrombopoietic stimulatory factor. Blood, 59(3), 569–575.PubMedGoogle Scholar
  27. 27.
    Gordon, M. Y., Bearpark, A. D., Clarke, D., & Dowding, C. R. (1990). Haemopoietic stem cell subpopulations in mouse and man: Discrimination by differential adherence and marrow repopulating ability. Bone Marrow Transplantation, 5(Suppl 1), 6–8.PubMedGoogle Scholar
  28. 28.
    Ogawa, M. (1993). Differentiation and proliferation of hematopoietic stem cells. Blood, 81(11), 2844–2853.PubMedGoogle Scholar
  29. 29.
    Morita, Y., Iseki, A., Okamura, S., Suzuki, S., Nakauchi, H., & Ema, H. (2011). Functional characterization of hematopoietic stem cells in the spleen. Experimental Hematology, 39(3), 351–359 e353.PubMedCrossRefGoogle Scholar
  30. 30.
    Gross, S., & Luckey, C. (1969). The oxygen tension-platelet relationship in cystic fibrosis. The American Review of Respiratory Disease, 100(4), 513–517.PubMedGoogle Scholar
  31. 31.
    O'Sullivan, B. P., & Michelson, A. D. (2006). The inflammatory role of platelets in cystic fibrosis. American Journal of Respiratory and Critical Care Medicine, 173(5), 483–490.PubMedCrossRefGoogle Scholar
  32. 32.
    Kemona-Chetnik, I., Bodzenta-Lukaszyk, A., Butkiewicz, A., & Dymnicka-Piekarska, V. (2007). Kemona H: [Thrombocytopoesis in allergic asthma]. Polskie Archiwum Medycyny Wewnętrznej, 117(1–2), 9–13.PubMedGoogle Scholar
  33. 33.
    Kornerup, K. N., & Page, C. P. (2007). The role of platelets in the pathophysiology of asthma. Platelets, 18(5), 319–328.PubMedCrossRefGoogle Scholar
  34. 34.
    Stoll, P., & Lommatzsch, M. (2014). Platelets in asthma: Does size matter? Respiration; International Review of Thoracic Diseases, 88(1), 22–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Tozkoparan, E., Deniz, O., Ucar, E., Bilgic, H., & Ekiz, K. (2007). Changes in platelet count and indices in pulmonary tuberculosis. Clinical Chemistry and Laboratory Medicine, 45(8), 1009–1013.PubMedCrossRefGoogle Scholar
  36. 36.
    Gunluoglu, G., Yazar, E. E., Veske, N. S., Seyhan, E. C., & Altin, S. (2014). Mean platelet volume as an inflammation marker in active pulmonary tuberculosis. Multidisciplinary Respiratory Medicine, 9(1), 11.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kroll, M. H., & Afshar-Kharghan, V. (2012). Platelets in pulmonary vascular physiology and pathology. Pulmonary Circulation, 2(3), 291–308.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Al-Drees, M. A., Yeo, J. H., Boumelhem, B. B., Antas, V. I., Brigden, K. W., Colonne, C. K., & Fraser, S. T. (2015). Making blood: The Haematopoietic niche throughout ontogeny. Stem Cells International, 2015, 571893.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Palis, J., Robertson, S., Kennedy, M., Wall, C., & Keller, G. (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development, 126(22), 5073–5084.PubMedGoogle Scholar
  40. 40.
    Tavian, M., & Peault, B. (2005). Embryonic development of the human hematopoietic system. The International Journal of Developmental Biology, 49(2–3), 243–250.PubMedCrossRefGoogle Scholar
  41. 41.
    Bowman, T. V., & Zon, L. I. (2009). Lessons from the niche for generation and expansion of hematopoietic stem cells. Drug Discovery Today Therapeutic Strategies, 6(4), 135–140.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Swain, A., Inoue, T., Tan, K. S., Nakanishi, Y., & Sugiyama, D. (2014). Intrinsic and extrinsic regulation of mammalian hematopoiesis in the fetal liver. Histology and Histopathology, 29(9), 1077–1082.PubMedGoogle Scholar
  43. 43.
    Tanaka, Y., Inoue-Yokoo, T., Kulkeaw, K., Yanagi-Mizuochi, C., Shirasawa, S., Nakanishi, Y., & Sugiyama, D. (2015). Embryonic hematopoietic progenitor cells reside in muscle before bone marrow hematopoiesis. PloS One, 10(9), e0138621.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Medvinsky, A. L., Samoylina, N. L., Muller, A. M., & Dzierzak, E. A. (1993). An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature, 364(6432), 64–67.PubMedCrossRefGoogle Scholar
  45. 45.
    Medvinsky, A., Rybtsov, S., & Taoudi, S. (2011). Embryonic origin of the adult hematopoietic system: Advances and questions. Development, 138(6), 1017–1031.PubMedCrossRefGoogle Scholar
  46. 46.
    Baron, M. H. (2005). Early patterning of the mouse embryo: Implications for hematopoietic commitment and differentiation. Experimental Hematology, 33(9), 1015–1020.PubMedCrossRefGoogle Scholar
  47. 47.
    Baron, M. H., Isern, J., & Fraser, S. T. (2012). The embryonic origins of erythropoiesis in mammals. Blood, 119(21), 4828–4837.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Barminko, J., Reinholt, B., & Baron, M. H. (2016). Development and differentiation of the erythroid lineage in mammals. Developmental and Comparative Immunology, 58, 18–29.PubMedCrossRefGoogle Scholar
  49. 49.
    Kumaravelu, P., Hook, L., Morrison, A. M., Ure, J., Zhao, S., Zuyev, S., Ansell, J., & Medvinsky, A. (2002). Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): Role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development, 129(21), 4891–4899.PubMedGoogle Scholar
  50. 50.
    Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F., & Dzierzak, E. (1994). Development of hematopoietic stem cell activity in the mouse embryo. Immunity, 1(4), 291–301.PubMedCrossRefGoogle Scholar
  51. 51.
    Medvinsky, A., & Dzierzak, E. (1996). Definitive hematopoiesis is autonomously initiated by the AGM region. Cell, 86(6), 897–906.PubMedCrossRefGoogle Scholar
  52. 52.
    Sugiyama, D., & Tsuji, K. (2006). Definitive hematopoiesis from endothelial cells in the mouse embryo; a simple guide. Trends in Cardiovascular Medicine, 16(2), 45–49.PubMedCrossRefGoogle Scholar
  53. 53.
    Lux, C. T., Yoshimoto, M., McGrath, K., Conway, S. J., Palis, J., & Yoder, M. C. (2008). All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood, 111(7), 3435–3438.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Khan, J. A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal-Estape, A., Pinho, S., Ciero, P., Nakahara, F., Ma'ayan, A., et al. (2016). Fetal liver hematopoietic stem cell niches associate with portal vessels. Science, 351(6269), 176–180.PubMedCrossRefGoogle Scholar
  55. 55.
    Bozzini, C. E., Barrio Rendo, M. E., Devoto, F. C., & Epper, C. E. (1970). Studies on medullary and extramedullary erythropoiesis in the adult mouse. The American Journal of Physiology, 219(3), 724–728.PubMedGoogle Scholar
  56. 56.
    Bowen, J. M., Perry, A. M., Quist, E., & Akhtari, M. (2015). Extramedullary hematopoiesis in a sentinel lymph node as an early sign of chronic myelomonocytic leukemia. Case Reports in Pathology, 2015, 594970.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Schnuelle, P., Waldherr, R., Lehmann, K. J., Woenckhaus, J., Back, W., Niemir, Z., & van der Woude, F. J. (1999). Idiopathic myelofibrosis with extramedullary hematopoiesis in the kidneys. Clinical Nephrology, 52(4), 256–262.PubMedGoogle Scholar
  58. 58.
    Woodward, N., Ancliffe, P., Griffiths, M. H., & Cohen, S. (2000). Renal myelofibrosis: An unusual cause of renal impairment. Nephrology, Dialysis, Transplantation, 15(2), 257–258.PubMedCrossRefGoogle Scholar
  59. 59.
    Lewis, D. J., Moul, J. W., Williams, S. C., Sesterhenn, I. A., & Colon, E. (1994). Perirenal liposarcoma containing extramedullary hematopoiesis associated with renal cell carcinoma. Urology, 43(1), 106–109.PubMedCrossRefGoogle Scholar
  60. 60.
    Guenechea, G., Gan, O. I., Dorrell, C., & Dick, J. E. (2001). Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nature Immunology, 2(1), 75–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Ema, H., Sudo, K., Seita, J., Matsubara, A., Morita, Y., Osawa, M., Takatsu, K., Takaki, S., & Nakauchi, H. (2005). Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Developmental Cell, 8(6), 907–914.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K. L., Ema, H., & Nakauchi, H. (2013). Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell, 154(5), 1112–1126.PubMedCrossRefGoogle Scholar
  63. 63.
    Purton, L. E., & Scadden, D. T. (2007). Limiting factors in murine hematopoietic stem cell assays. Cell Stem Cell, 1(3), 263–270.PubMedCrossRefGoogle Scholar
  64. 64.
    Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., et al. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502(7473), 637–643.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Asada N., Kunisaki Y., Pierce H., Wang Z., Fernandez N.F., Birbrair A., Ma’ayan A., Frenette P. S. (2017). Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nature cell biology.Google Scholar
  66. 66.
    Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4(1–2), 7–25.PubMedGoogle Scholar
  67. 67.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121(7), 1109–1121.PubMedCrossRefGoogle Scholar
  68. 68.
    Sena, I., Prazeres, P., Santos, G., Borges, I., Azevedo, P., Andreotti, J., Almeida, V., Paiva, A., Guerra, D., Lousado, L., Souto, L., Mintz, A., & Birbrair, A (2017). Identity of Gli1+ cells in the bone marrow. Experimental Hematology. In pressGoogle Scholar
  69. 69.
    Birbrair, A., & Delbono, O. (2015). Pericytes are essential for skeletal muscle formation. Stem Cell Reviews, 11(4), 547–548.PubMedCrossRefGoogle Scholar
  70. 70.
    Birbrair A., Frenette P.S. (2016). Niche heterogeneity in the bone marrow. Annals of the new York Academy of Sciences, 1370, 82–96. Google Scholar
  71. 71.
    Birbrair, A., Zhang, T., Files, D. C., Mannava, S., Smith, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Research & Therapy, 5(6), 122.CrossRefGoogle Scholar
  72. 72.
    Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Research, 10(1), 67–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Enikolopov, G. N., Mintz, A., & Delbono, O. (2013). Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells and Development, 22(16), 2298–2314.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2013). Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. American Journal of Physiology. Cell Physiology, 305(11), C1098–C1113.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2014). Pericytes: Multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Frontiers in Aging Neuroscience, 6, 245.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Mintz, A., & Delbono, O. (2015). Pericytes at the intersection between tissue regeneration and pathology. Clinical Science (London, England), 128(2), 81–93.CrossRefGoogle Scholar
  77. 77.
    Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., & Delbono, O. (2014). Type-2 pericytes participate in normal and tumoral angiogenesis. American Journal of Physiology. Cell Physiology, 307(1), C25–C38.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro dos Santos GS, Mintz A. et al. (2017) Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology.Google Scholar
  79. 79.
    Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, Goncalves R, Mintz A, Delbono O (2017) How plastic are pericytes? Stem cells and development.Google Scholar
  80. 80.
    Birbrair, A., Zhang T., Wang ZM., Messi ML., Enikolopov, GN., Mintz, A., & Delbono, O. (2013). Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Experimental Cell Research, 319(1), 45-63.Google Scholar
  81. 81.
    Birbrair, A., Wang, ZM., Messi, ML., Enikolopov, GN., Delbono, O., & Rota, M. (2011) Nestin-GFP Transgene Reveals Neural Precursor Cells in Adult Skeletal Muscle. PLoS ONE, 6(2), e16816.Google Scholar
  82. 82.
    Birbrair, A., Sattiraju, A., Zhu, D., Zulato, G., Batista, B., Nguyen, VT. et al. (2017) Novel Peripherally Derived Neural-Like Stem Cells as Therapeutic Carriers for Treating Glioblastomas. STEM CELLS Translational Medicine, 6(2), 471–481.Google Scholar
  83. 83.
    Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., Conway, S., Orkin, S. H., Yoder, M. C., & Mikkola, H. K. (2008). The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell, 2(3), 252–263.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Crapo, J. D., Barry, B. E., Gehr, P., Bachofen, M., & Weibel, E. R. (1982). Cell number and cell characteristics of the normal human lung. The American Review of Respiratory Disease, 126(2), 332–337.PubMedGoogle Scholar
  85. 85.
    Bruns, I., Lucas, D., Pinho, S., Ahmed, J., Lambert, M. P., Kunisaki, Y., Scheiermann, C., Schiff, L., Poncz, M., Bergman, A., et al. (2014). Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 20(11), 1315–1320.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Nakamura-Ishizu, A., Takubo, K., Fujioka, M., & Suda, T. (2014). Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochemical and Biophysical Research Communications, 454(2), 353–357.PubMedCrossRefGoogle Scholar
  87. 87.
    Heazlewood, S. Y., Neaves, R. J., Williams, B., Haylock, D. N., Adams, T. E., & Nilsson, S. K. (2013). Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Research, 11(2), 782–792.PubMedCrossRefGoogle Scholar
  88. 88.
    Kaushansky, K., Lok, S., Holly, R. D., Broudy, V. C., Lin, N., Bailey, M. C., Forstrom, J. W., Buddle, M. M., Oort, P. J., Hagen, F. S., et al. (1994). Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature, 369(6481), 568–571.PubMedCrossRefGoogle Scholar
  89. 89.
    Kimura, S., Roberts, A. W., Metcalf, D., & Alexander, W. S. (1998). Hematopoietic stem cell deficiencies in mice lacking c-Mpl, the receptor for thrombopoietin. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1195–1200.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bersenev, A., Wu, C., Balcerek, J., & Tong, W. (2008). Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. The Journal of Clinical Investigation, 118(8), 2832–2844.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., et al. (2007). Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell, 1(6), 685–697.PubMedCrossRefGoogle Scholar
  92. 92.
    de Graaf, C. A., Kauppi, M., Baldwin, T., Hyland, C. D., Metcalf, D., Willson, T. A., Carpinelli, M. R., Smyth, G. K., Alexander, W. S., & Hilton, D. J. (2010). Regulation of hematopoietic stem cells by their mature progeny. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21689–21694.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhao, M., Perry, J. M., Marshall, H., Venkatraman, A., Qian, P., He, X. C., Ahamed, J., & Li, L. (2014). Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nature Medicine, 20(11), 1321–1326.PubMedCrossRefGoogle Scholar
  94. 94.
    Olson, T. S., Caselli, A., Otsuru, S., Hofmann, T. J., Williams, R., Paolucci, P., Dominici, M., & Horwitz, E. M. (2013). Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood, 121(26), 5238–5249.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Soderberg, S. S., Karlsson, G., & Karlsson, S. (2009). Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Annals of the New York Academy of Sciences, 1176, 55–69.PubMedCrossRefGoogle Scholar
  96. 96.
    Kent, D. G., Copley, M. R., Benz, C., Wohrer, S., Dykstra, B. J., Ma, E., Cheyne, J., Zhao, Y., Bowie, M. B., Zhao, Y., et al. (2009). Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood, 113(25), 6342–6350.PubMedCrossRefGoogle Scholar
  97. 97.
    Sanjuan-Pla, A., Macaulay, I. C., Jensen, C. T., Woll, P. S., Luis, T. C., Mead, A., Moore, S., Carella, C., Matsuoka, S., Bouriez Jones, T., et al. (2013). Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 502(7470), 232–236.PubMedCrossRefGoogle Scholar
  98. 98.
    Weibel, E. R. (1974). On pericytes, particularly their existence on lung capillaries. Microvascular Research, 8(2), 218–235.PubMedCrossRefGoogle Scholar
  99. 99.
    Hung, C., Linn, G., Chow, Y. H., Kobayashi, A., Mittelsteadt, K., Altemeier, W. A., Gharib, S. A., Schnapp, L. M., & Duffield, J. S. (2013). Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine, 188(7), 820–830.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Rock, J. R., Barkauskas, C. E., Cronce, M. J., Xue, Y., Harris, J. R., Liang, J., Noble, P. W., & Hogan, B. L. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 108(52), E1475–E1483.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ricard, N., Tu, L., Le Hiress, M., Huertas, A., Phan, C., Thuillet, R., Sattler, C., Fadel, E., Seferian, A., Montani, D., et al. (2014). Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation, 129(15), 1586–1597.PubMedCrossRefGoogle Scholar
  102. 102.
    Shepro, D., & Morel, N. M. (1993). Pericyte physiology. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 7(11), 1031–1038.Google Scholar
  103. 103.
    Folman, C. C., Linthorst, G. E., van Mourik, J., van Willigen, G., de Jonge, E., Levi, M., de Haas, M., & von dem Borne, A. E. (2000). Platelets release thrombopoietin (Tpo) upon activation: Another regulatory loop in thrombocytopoiesis? Thrombosis and Haemostasis, 83(6), 923–930.PubMedGoogle Scholar
  104. 104.
    Levesque, J. P., Hendy, J., Winkler, I. G., Takamatsu, Y., & Simmons, P. J. (2003). Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Experimental Hematology, 31(2), 109–117.PubMedCrossRefGoogle Scholar
  105. 105.
    Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., Crystal, R. G., Besmer, P., Lyden, D., Moore, M. A., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., Ponomaryov, T., Taichman, R. S., Arenzana-Seisdedos, F., Fujii, N., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687–694.PubMedCrossRefGoogle Scholar
  107. 107.
    Valenzuela-Fernandez, A., Planchenault, T., Baleux, F., Staropoli, I., Le-Barillec, K., Leduc, D., Delaunay, T., Lazarini, F., Virelizier, J. L., Chignard, M., et al. (2002). Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. The Journal of Biological Chemistry, 277(18), 15677–15689.PubMedCrossRefGoogle Scholar
  108. 108.
    Levesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N., & Simmons, P. J. (2001). Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood, 98(5), 1289–1297.PubMedCrossRefGoogle Scholar
  109. 109.
    Chow, A., Huggins, M., Ahmed, J., Hashimoto, D., Lucas, D., Kunisaki, Y., Pinho, S., Leboeuf, M., Noizat, C., van Rooijen, N., et al. (2013). CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature Medicine, 19(4), 429–436.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Meyer, A., Wang, W., Qu, J., Croft, L., Degen, J. L., Coller, B. S., & Ahamed, J. (2012). Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood, 119(4), 1064–1074.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pinho, S., Lacombe, J., Hanoun, M., Mizoguchi, T., Bruns, I., Kunisaki, Y., & Frenette, P. S. (2013). PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. The Journal of Experimental Medicine, 210(7), 1351–1367.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Notta, F., Doulatov, S., Laurenti, E., Poeppl, A., Jurisica, I., & Dick, J. E. (2011). Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science, 333(6039), 218–221.PubMedCrossRefGoogle Scholar
  114. 114.
    Guezguez, B., Campbell, C. J., Boyd, A. L., Karanu, F., Casado, F. L., Di Cresce, C., Collins, T. J., Shapovalova, Z., Xenocostas, A., & Bhatia, M. (2013). Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell, 13(2), 175–189.PubMedCrossRefGoogle Scholar
  115. 115.
    Lefrancais E., Ortiz-Munoz G., Caudrillier A., Mallavia B., Liu F., Sayah D.M., Thornton E.E., Headley M.B., David T., Coughlin S.R. et al. (2017). The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature, 544(7648), 105–109.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Isabella Borges
    • 1
  • Isadora Sena
    • 1
  • Patrick Azevedo
    • 1
  • Julia Andreotti
    • 1
  • Viviani Almeida
    • 1
  • Ana Paiva
    • 1
  • Gabryella Santos
    • 1
  • Daniel Guerra
    • 1
  • Pedro Prazeres
    • 1
  • Luiza Lousado Mesquita
    • 1
  • Luanny Souto de Barros Silva
    • 1
  • Caroline Leonel
    • 1
  • Akiva Mintz
    • 2
  • Alexander Birbrair
    • 1
    • 3
    • 4
  1. 1.Department of PathologyFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of RadiologyWake Forest School of MedicineWinston-SalemUSA
  3. 3.Department of Cell BiologyAlbert Einstein College of MedicineBronxUSA
  4. 4.Albert Einstein College of MedicineRuth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchBronxUSA

Personalised recommendations