L-Glutamine in vitro Modulates some Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells


Glutamine (GLUT) is a nonessential amino acid that can become conditionally essential under stress conditions, being able to act in the modulation of the immune responses. Mesenchymal stem cells (MSCs) are known to their capability in the modulation of immune responses through cell-cell contact and by the secretion of soluble factors. Considering that GLUT is an immunonutrient and little is known about the influence of GLUT on the capability of MSCs to modulate immune cells, this work aims to investigate how variations in GLUT concentrations in vitro could affect some immunomodulatory properties of MSCs. In order to evaluate the effects of GLUT on MSCs immunomodulatory properties, cell proliferation rates, the expression of NFκB and STAT-3, and the production of IL-1β, IL-6, IL-10, TGF-β and TNF-α by MSCs were assessed. Based on our findings, GLUT at high doses (10 mM) augmented the proliferation of MSCs and modulated immune responses by decreasing levels of pro-inflammatory cytokines, such as IL-1β and IL-6, and by increasing levels of anti-inflammatory cytokines IL-10 and TGF-β. In addition, MSCs cultured in higher GLUT concentrations (10 mM) expressed lower levels of NF-κB and higher levels of STAT-3. Furthermore, conditioned media from MSCs cultured at higher GLUT concentrations (10 mM) reduced lymphocyte and macrophage proliferation, increased IL-10 production by both cells types, and decreased IFN-γ production by lymphocytes. Overall, this study showed that 10 mM of GLUT is able to modify immunomodulatory properties of MSCs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Newsholme, P. (2001). Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? Journal of Nutrition, 131(9), 2515S–2522S.

    CAS  PubMed  Google Scholar 

  2. 2.

    Tapiero, H., Mathé, G., Couvreur, P., Tew, K.D. (2002). II. Glutamine and glutamate. Biomedicine & Pharmacotherapy, 56(9), 446–457.

    CAS  Article  Google Scholar 

  3. 3.

    Matés, J. M., Segura, J. A., Martín-Rufián, M., Campos-Sandoval, J. A., Alonso, F. J., & Márquez, J. (2013). Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Current Molecular Medicine, 13(4), 514–534.

    Article  PubMed  Google Scholar 

  4. 4.

    Brasse-Lagnel, C. G., Lavoinne, A. M., & Husson, A. S. (2010). Amino acid regulation of mammalian gene expression in the intestine. Biochimie, 92(7), 729–735.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hakvoort, T. B., He, Y., Kulik, W., et al. (2017). Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology, 65(1), 281–293.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Zhang, B., Lin, M., Yu, C., et al. (2016). Alanyl-glutamine supplementation regulates mTOR and ubiquitin proteasome proteolysis signaling pathways in piglets. Nutrition, 32(10), 1123–1131.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Calder, P. C., & Yaqoob, P. (1999). Glutamine and the immune system. Amino Acids, 17(3), 227–241.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Holecek, M. (2013). Side effects of long-term glutamine supplementation. Journal of Parenteral and Enteral Nutrition, 37(5), 607–616.

    Article  PubMed  Google Scholar 

  9. 9.

    Kim, H. (2011). Glutamine as an immunonutrient. Yonsei Medical Journal, 52(6), 892–897.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ito, K., & Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews Molecular Cell Biology, 15(4), 243–256.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267–274.

    CAS  PubMed  Google Scholar 

  12. 12.

    Caplan, A. (2005). Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Engineering, 11(7–8), 1198–1211.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    García-García, A., de Castillejo, C. L., & Méndez-Ferrer, S. (2015). BMSCs and hematopoiesis. Immunology Letters, 168(2), 129–135.

    Article  PubMed  Google Scholar 

  14. 14.

    Bernardo, M. E., & Fibbe, W. E. (2015). Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunology Letters, 168(2), 215–221.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Zhang, J., Huang, X., Wang, H., et al. (2015). The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research & Therapy, 1(6), 234.

    Article  Google Scholar 

  16. 16.

    Lee, M. W., Ryu, S., Kim, D. S., Sung, K. W., Koo, H. H., & Yoo, K. H. (2015). Strategies to improve the immunosuppressive properties of human mesenchymal stem cells. Stem Cell Research & Therapy, 7(6), 179.

    Article  Google Scholar 

  17. 17.

    Dos Santos, G. G., Batool, S., Hastreiter, A., et al. (2016). The influence of protein malnutrition on biological and immunomodulatory aspects of bone marrow mesenchymal stem cells. Clinical Nutrition, S0261-5614(16), 30202–30203.

    Google Scholar 

  18. 18.

    Eagle, H., Oyama, V. I., Levy, M., Horton, C. L., & Fleischman, R. (1956). The growth response of mammalian cells in tissue culture to L-glutamine and L-glutamic acid. Journal of Biological Chemistry, 218, 607–616.

    CAS  PubMed  Google Scholar 

  19. 19.

    Wischmeyer, P. E., Riehm, J., Singleton, K. D., et al. (2003). Glutamine attenuates tumor necrosis factor-alpha release and enhances heat shock protein 72 in human peripheral blood mononuclear cells. Nutrition, 19, 1–6.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Chandra, R. K. (1987). Nutrition and immunity: Practical applications of Research findings. Canadian Family Physician, 33, 1417–1420.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Higuera, G. A., Schop, D., Spitters, T. W., et al. (2012). Patterns of amino acid metabolism by proliferating human mesenchymal stem cells. Tissue Engineering Part a, 18(5–6), 654–664.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Schop, D., Janssen, F. W., Borgart, E., de Bruijn, J. D., & van Dijkhuizen-Radersma, R. (2008). Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: Growth and metabolism. Journal of Tissue Engineering and Regenerative Medicine, 2(2–3), 126–135.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Grivennikov, S. I., & Karin, M. (2010). Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine & Growth Factor Reviews, 21(1), 11–19.

    CAS  Article  Google Scholar 

  24. 24.

    De Miguel, M. P., Fuentes-Julián, S., & Blázquez-Martínez, A. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine, 12(5), 574–591.

    Article  PubMed  Google Scholar 

  25. 25.

    Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., et al. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells, 6(5), 552–570.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Murray, P. J. (2005). The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8686–8691.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Levy, D. E., & Lee, C. K. (2002). What does Stat3 do? Journal of Clinical Investigation, 109(9), 1143–1148.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Riley, J. K., Takeda, K., Akira, S., & Schreiber, R. D. (1999). Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. Journal of Biological Chemistry, 274(23), 16513–16521.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Bonecini-Almeida, M. G., Ho, J. L., Boechat, N., et al. (2004). Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infection and Immunity, 72(5), 2628–2634.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ghannam, S., Bouffi, C., Djouad, F., Jorgensen, C., & Noël, D. (2010). Immunosuppression by mesenchymal stem cells: Mechanisms and clinical applications. Stem Cell Research & Therapy, 1(1), 2.

    Article  Google Scholar 

  31. 31.

    Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Groux, H., & Cottrez, F. (2003). The complex role of interleukin-10 in autoimmunity. Journal of Autoimmunity, 20(4), 281–285.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Scapini, P., Lamagna, C., Hu, Y., et al. (2011). B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 108(41), E823–E832.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sabat, R., Grutz, G., Warszawska, K., et al. (2010). Biology of interleukin-10. Cytokine & Growth Factor Reviews, 21(5), 331–344.

    CAS  Article  Google Scholar 

  35. 35.

    Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.

    Article  PubMed  Google Scholar 

  36. 36.

    Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Sun, L., Akiyama, K., Zhang, H., et al. (2009). Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells, 27(6), 1421–1432.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Najar, M., Rouas, R., & Raicevic, G. (2009). Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: The importance of low cell ratio and role of interleukin-6. Cytotherapy, 11(5), 570–583.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Liu, X. J., Zhang, J. F., & Sun, B. (2009). Reciprocal effect of mesenchymal stem cell on experimental autoimmune encephalomyelitis is mediated by transforming growth factor-beta and interleukin-6. Clinical & Experimental Immunology, 158(1), 37–44.

    CAS  Article  Google Scholar 

  40. 40.

    Steinman, R. M., & Banchereau, J. (2007). Taking dendritic cells into medicine. Nature, 449(7161), 419–426.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Maggini, J., Mirkin, G., Bognanni, I., et al. (2010). Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PloS One, 5, e9252.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zhang, Q. Z., Su, W. R., Shi, S. H., et al. (2010). Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells, 28(10), 1856–1868.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    O'Garra, A., & Murphy, K. M. (2009). From IL-10 to IL-12: How pathogens and their products stimulate APCs to induce T(H)1 development. Nature Immunology, 10(9), 929–932.

    Article  PubMed  Google Scholar 

Download references


The authors thank FAPESP for financial support. Fock RA and Borelli P are fellows of the Conselho Nacional de Pesquisa e Tecnologia (CNPq).

Author information



Corresponding author

Correspondence to Ricardo Ambrósio Fock.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, G.G., Hastreiter, A.A., Sartori, T. et al. L-Glutamine in vitro Modulates some Immunomodulatory Properties of Bone Marrow Mesenchymal Stem Cells. Stem Cell Rev and Rep 13, 482–490 (2017). https://doi.org/10.1007/s12015-017-9746-0

Download citation


  • L-Glutamine
  • Mesenchymal stem cells
  • Macrophages and lymphocytes
  • Cytokines
  • Immunomodulation