A Singular Role of IK1 Promoting the Development of Cardiac Automaticity during Cardiomyocyte Differentiation by IK1 Induced Activation of Pacemaker Current

Abstract

The inward rectifier potassium current (IK1) is generally thought to suppress cardiac automaticity by hyperpolarizing membrane potential (MP). We recently observed that IK1 could promote the spontaneously-firing automaticity induced by upregulation of pacemaker funny current (If) in adult ventricular cardiomyocytes (CMs). However, the intriguing ability of IK1 to activate If and thereby promote automaticity has not been explored. In this study, we combined mathematical and experimental assays and found that only IK1 and If, at a proper-ratio of densities, were sufficient to generate rhythmic MP-oscillations even in unexcitable cells (i.e. HEK293T cells and undifferentiated mouse embryonic stem cells [ESCs]). We termed this effect IK1-induced If activation. Consistent with previous findings, our electrophysiological recordings observed that around 50% of mouse (m) and human (h) ESC-differentiated CMs could spontaneously fire action potentials (APs). We found that spontaneously-firing ESC-CMs displayed more hyperpolarized maximum diastolic potential and more outward IK1 current than quiescent-yet-excitable m/hESC-CMs. Rather than classical depolarization pacing, quiescent mESC-CMs were able to fire APs spontaneously with an electrode-injected small outward-current that hyperpolarizes MP. The automaticity to spontaneously fire APs was also promoted in quiescent hESC-CMs by an IK1-specific agonist zacopride. In addition, we found that the number of spontaneously-firing m/hESC-CMs was significantly decreased when If was acutely upregulated by Ad-CGI-HCN infection. Our study reveals a novel role of IK1 promoting the development of cardiac automaticity in m/hESC-CMs through a mechanism of IK1-induced If activation and demonstrates a synergistic interaction between IK1 and If that regulates cardiac automaticity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Christoffels, V. M., Smits, G. J., Kispert, A., & Moorman, A. F. (2010). Development of the pacemaker tissues of the heart. Circulation Research, 106, 240–254.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Mangoni, M. E., & Nargeot, J. (2008). Genesis and regulation of the heart automaticity. Physiological Reviews, 88, 919–982.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Wilders, R. (2007). Computer modelling of the sinoatrial node. Medical & Biological Engineering & Computing, 45, 189–207.

    Article  Google Scholar 

  4. 4.

    Ludwig, A., Zong, X., Jeglitsch, M., Hofmann, F., & Biel, M. (1998). A family of hyperpolarization-activated mammalian cation channels. Nature, 393, 587–591.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    DiFrancesco, D., & Noble, D. (2012). The funny current has a major pacemaking role in the sinus node. Heart Rhythm, 9, 299–301.

    Article  PubMed  Google Scholar 

  6. 6.

    DiFrancesco, D. (2010). The role of the funny current in pacemaker activity. Circulation Research, 106, 434–446.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Cohen, I. S., & Robinson, R. B. (2006). Pacemaker current and automatic rhythms: Toward a molecular understanding. Handbook of Experimental Pharmacology, 41–71.

  8. 8.

    Qu, J., Barbuti, A., Protas, L., Santoro, B., Cohen, I. S., & Robinson, R. B. (2001). HCN2 overexpression in newborn and adult ventricular myocytes: Distinct effects on gating and excitability. Circulation Research, 89, E8–14.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Qu, J., Plotnikov, A. N., Danilo Jr., P., et al. (2003). Expression and function of a biological pacemaker in canine heart. Circulation, 107, 1106–1109.

    Article  PubMed  Google Scholar 

  10. 10.

    Tse, H. F., Xue, T., Lau, C. P., et al. (2006). Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation, 114, 1000–1011.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Kubo, Y., Baldwin, T. J., Jan, Y. N., & Jan, L. Y. (1993). Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature, 362, 127–133.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Tourneur, Y., Mitra, R., Morad, M., & Rougier, O. (1987). Activation properties of the inward-rectifying potassium channel on mammalian heart cells. The Journal of Membrane Biology, 97, 127–135.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Ibarra, J., Morley, G. E., & Delmar, M. (1991). Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes. Biophysical Journal, 60, 1534–1539.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Miake, J., Marban, E., & Nuss, H. B. (2003). Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. The Journal of Clinical Investigation, 111, 1529–1536.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shinagawa, Y., Satoh, H., & Noma, A. (2000). The sustained inward current and inward rectifier K+ current in pacemaker cells dissociated from rat sinoatrial node. The Journal of Physiology, 523(Pt 3), 593–605.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cho, H. S., Takano, M., & Noma, A. (2003). The electrophysiological properties of spontaneously beating pacemaker cells isolated from mouse sinoatrial node. The Journal of Physiology, 550, 169–180.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Guo, J., Mitsuiye, T., & Noma, A. (1997). The sustained inward current in sino-atrial node cells of guinea-pig heart. Pflügers Archiv, 433, 390–396.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Zaritsky, J. J., Redell, J. B., Tempel, B. L., & Schwarz, T. L. (2001). The consequences of disrupting cardiac inwardly rectifying K(+) current (I(K1)) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. The Journal of Physiology, 533, 697–710.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Plaster, N. M., Tawil, R., Tristani-Firouzi, M., et al. (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell, 105, 511–519.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Liu, A., Tang, M., Xi, J., et al. (2010). Functional characterization of inward rectifier potassium ion channel in murine fetal ventricular cardiomyocytes. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 26, 413–420.

    CAS  Article  Google Scholar 

  21. 21.

    Masuda, H., & Sperelakis, N. (1993). Inwardly rectifying potassium current in rat fetal and neonatal ventricular cardiomyocytes. The American Journal of Physiology, 265, H1107–H1111.

    CAS  PubMed  Google Scholar 

  22. 22.

    Fu, J. D., Jiang, P., Rushing, S., Liu, J., Chiamvimonvat, N., & Li, R. A. (2010). Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells and Development, 19, 773–782.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Lieu, D. K., Fu, J. D., Chiamvimonvat, N., et al. (2013). Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation. Arrhythmia and Electrophysiology, 6, 191–201.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Fu, J. D., Rushing, S. N., Lieu, D. K., et al. (2011). Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PloS One, 6, e27417.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of Clinical Investigation, 108, 407–414.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mummery, C., Ward-van Oostwaard, D., Doevendans, P., et al. (2003). Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation, 107, 2733–2740.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Xue, T., Cho, H. C., Akar, F. G., et al. (2005). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: Insights into the development of cell-based pacemakers. Circulation, 111, 11–20.

    Article  PubMed  Google Scholar 

  28. 28.

    He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: Action potential characterization. Circulation Research, 93, 32–39.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Miake, J., Marban, E., & Nuss, H. B. (2002). Biological pacemaker created by gene transfer. Nature, 419, 132–133.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Chan, Y. C., Siu, C. W., Lau, Y. M., Lau, C. P., Li, R. A., & Tse, H. F. (2009). Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity. Journal of Cardiovascular Electrophysiology, 20, 1048–1054.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Saito, Y., Nakamura, K., Yoshida, M., et al. (2015). Enhancement of spontaneous activity by HCN4 overexpression in mouse embryonic stem cell-derived Cardiomyocytes - a possible biological pacemaker. PloS One, 10, e0138193.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wobus, A. M., Guan, K., Yang, H. T., & Boheler, K. R. (2002). Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods in Molecular Biology, 185, 127–156.

    CAS  PubMed  Google Scholar 

  33. 33.

    Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18, 399–404.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Xue, T., Siu, C. W., Lieu, D. K., Lau, C. P., Tse, H. F., & Li, R. A. (2007). Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels. Circulation, 115, 1839–1850.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Wang, K., Xue, T., Tsang, S. Y., et al. (2005). Electrophysiological properties of pluripotent human and mouse embryonic stem cells. Stem Cells, 23, 1526–1534.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ma, J., Guo, L., Fiene, S. J., et al. (2011). High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. American Journal of Physiology. Heart and Circulatory Physiology, 301, H2006–H2017.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Dokos, S., Celler, B., & Lovell, N. (1996). Ion currents underlying sinoatrial node pacemaker activity: A new single cell mathematical model. Journal of Theoretical Biology, 181, 245–272.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Liu, Q. H., Li, X. L., Xu, Y. W., Lin, Y. Y., Cao, J. M., & Wu, B. W. (2012). A novel discovery of IK1 channel agonist: Zacopride selectively enhances IK1 current and suppresses triggered arrhythmias in the rat. Journal of Cardiovascular Pharmacology, 59, 37–48.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Johnson, M. A., Weick, J. P., Pearce, R. A., & Zhang, S. C. (2007). Functional neural development from human embryonic stem cells: Accelerated synaptic activity via astrocyte coculture. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 3069–3077.

    CAS  Article  Google Scholar 

  40. 40.

    Kamino, K., Hirota, A., & Fujii, S. (1981). Localization of pacemaking activity in early embryonic heart monitored using voltage-sensitive dye. Nature, 290, 595–597.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Van Mierop, L. H. (1967). Location of pacemaker in chick embryo heart at the time of initiation of heartbeat. The American Journal of Physiology, 212, 407–415.

    PubMed  Google Scholar 

  42. 42.

    Konig, S., Hinard, V., Arnaudeau, S., et al. (2004). Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. The Journal of Biological Chemistry, 279, 28187–28196.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Hoshino, S., Omatsu-Kanbe, M., Nakagawa, M., & Matsuura, H. (2012). Postnatal developmental decline in IK1 in mouse ventricular myocytes isolated by the Langendorff perfusion method: Comparison with the chunk method. Pflügers Archiv, 463, 649–668.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Lieu, D. K., Chan, Y. C., Lau, C. P., Tse, H. F., Siu, C. W., & Li, R. A. (2008). Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers. Heart Rhythm, 5, 1310–1317.

    Article  PubMed  Google Scholar 

  45. 45.

    Moore, J. C., Fu, J., Chan, Y. C., et al. (2008). Distinct cardiogenic preferences of two human embryonic stem cell (hESC) lines are imprinted in their proteomes in the pluripotent state. Biochemical and Biophysical Research Communications, 372, 553–558.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Mummery, C. L., Zhang, J., Ng, E. S., Elliott, D. A., Elefanty, A. G., & Kamp, T. J. (2012). Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: A methods overview. Circulation Research, 111, 344–358.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Kim, K., Doi, A., Wen, B., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sanchez-Freire, V., Lee, A. S., Hu, S., et al. (2014). Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. Journal of the American College of Cardiology, 64, 436–448.

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Lakatta, E. G., Maltsev, V. A., & Vinogradova, T. M. (2010). A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker. Circulation Research, 106, 659–673.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Yaniv, Y., Lakatta, E. G., & Maltsev, V. A. (2015). From two competing oscillators to one coupled-clock pacemaker cell system. Frontiers in Physiology, 6, 28.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Vaidyanathan, R., Markandeya, Y. S., Kamp, T. J., Makielski, J. C., January, C. T., & Eckhardt, L. L. (2016). IK1-enhanced human-induced pluripotent stem cell-derived cardiomyocytes: An improved cardiomyocyte model to investigate inherited arrhythmia syndromes. American Journal of Physiology. Heart and Circulatory Physiology, 310, H1611–H1621.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jill Dunham for editorial assistance. This work was supported by the Start-up Fund from The MetroHealth System (to J.D.F.) and grants from the American Heart Association-13SDG14580035 (to J.D.F.), the Research Grant Council (TRS T13-706/11 to R.A.L.) and the National Institutes of Health (NIH)-R01HL096962 (to I.D.), NIH-R21HL123012 (to K.R.L.).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ronald A. Li or Ji-Dong Fu.

Ethics declarations

Disclosures

No disclosure of conflict interest.

Electronic supplementary material

Figure S1

(DOCX 629 kb)

Figure S2

(DOCX 834 kb)

Figure S3

(DOCX 322 kb)

Supplemental Table 1

(DOCX 117 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Timofeyev, V., Dennis, A. et al. A Singular Role of IK1 Promoting the Development of Cardiac Automaticity during Cardiomyocyte Differentiation by IK1 Induced Activation of Pacemaker Current. Stem Cell Rev and Rep 13, 631–643 (2017). https://doi.org/10.1007/s12015-017-9745-1

Download citation

Keywords

  • IK1
  • If
  • Rhythmic oscillation
  • Automaticity
  • Embryonic stem cell
  • Cardiomyocyte differentiation