Skip to main content

Advertisement

Log in

Understanding Parkinson’s Disease through the Use of Cell Reprogramming

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Recent progress in the field of somatic cell reprogramming offers exciting new possibilities for the study and treatment of Parkinson’s disease (PD). Reprogramming technology offers the ability to untangle the diverse contributing risk factors for PD, such as ageing, genetics and environmental toxins. In order to gain novel insights into such a complex disease, cell-based models of PD should represent, as closely as possible, aged human dopaminergic neurons of the substantia nigra. However, the generation of high yields of functionally mature, authentic ventral midbrain dopamine (vmDA) neurons has not been easy to achieve. Furthermore, ensuring cells represent aged rather than embryonic neurons has presented a significant challenge. To date, induced pluripotent stem (iPS) cells have received much attention for modelling PD. Nonetheless, direct reprogramming strategies (either to a neuronal or neural stem/progenitor fate) represent a valid alternative that are yet to be extensively explored. Direct reprogramming is faster and more efficient than iPS cell reprogramming, and appears to conserve age-related markers. At present, however, protocols aiming to derive authentic, mature vmDA neurons by direct reprogramming of adult human somatic cells are sorely lacking. This review will discuss the strategies that have been employed to generate vmDA neurons and their potential for the study and treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yan, Y., Yang, D., Zarnowska, E., et al. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23, 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perrier, A. L., Tabar, V., Barberi, T., et al. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 12543–12548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brüstle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proceedings of the National Academy of Sciences of the United States of America, 106, 3225–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ye, W., Shimamura, K., Rubenstein, J. L. R., Hynes, M. A., & Rosenthal, A. (1998). FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell, 93, 755–766.

    Article  CAS  PubMed  Google Scholar 

  5. Kawasaki, H., Mizuseki, K., Nishikawa, S., et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity. Neuron, 28, 31–40.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, S.-H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotech, 18, 675–679.

    Article  CAS  Google Scholar 

  7. Barberi, T., Klivenyi, P., Calingasan, N. Y., et al. (2003). Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotech, 21, 1200–1207.

    Article  CAS  Google Scholar 

  8. Reubinoff, B., Itsykson, P., Turetsky, T., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19, 1134–1140.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, S.-C., Wernig, M., Duncan, I. D., Brustle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotech, 19, 1129–1133.

    Article  CAS  Google Scholar 

  10. Pankratz, M., Li, X.-J., Lavaute, T., Lyons, E., Chen, X., & Zhang, S.-C. (2007). Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells, 25, 1511–1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng, X., Cai, J., Chen, J., et al. (2004). Dopaminergic differentiation of human embryonic stem cells. Stem Cells, 22, 925–940.

    Article  CAS  PubMed  Google Scholar 

  12. Park, C. H., Minn, Y. K., Lee, J. Y., et al. (2005). In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. Journal of Neurochemistry, 92, 1265–1276.

    Article  CAS  PubMed  Google Scholar 

  13. Roy, N. S., Cleren, C., Singh, S. K., Yang, L., Beal, M. F., & Goldman, S. A. (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nature Medicine, 12, 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  14. Cho, M. S., Lee, Y. E., Kim, J. Y., et al. (2008). Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 3392–3397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Swistowski, A., Peng, J., Liu, Q., et al. (2010). Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells, 28, 1893–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotech, 27, 275–280.

    Article  CAS  Google Scholar 

  17. Zhou, J., Su, P., Li, D., Tsang, S., Duan, E., & Wang, F. (2010). High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells, 28, 1741–1750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, W., Sun, W., Zhang, Y., et al. (2011). Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 108, 8299–8304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brederlau, A., Correia, A. S., Anisimov, S. V., et al. (2006). Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells, 24, 1433–1440.

    Article  CAS  PubMed  Google Scholar 

  20. Yang, D., Zhang, Z.-J., Oldenburg, M., Ayala, M., & Zhang, S.-C. (2008). Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells, 26, 55–63.

    Article  CAS  PubMed  Google Scholar 

  21. Cooper, O., Hargus, G., Deleidi, M., et al. (2010). Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neurosciences, 45, 258–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Denham, M., Thompson, L. H., Leung, J., Pebay, A., Bjorklund, A., & Dottori, M. (2010). Gli1 is an inducing factor in generating floor plate progenitor cells from human embryonic stem cells. Stem Cells, 28, 1805–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ono, Y., Nakatani, T., Sakamoto, Y., et al. (2007). Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development, 134, 3213–3225.

    Article  CAS  PubMed  Google Scholar 

  24. Bonilla, S., Hall, A. C., Pinto, L., et al. (2008). Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia, 56, 809–820.

    Article  PubMed  Google Scholar 

  25. Joksimovic, M., Yun, B. A., Kittappa, R., et al. (2009). Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nature Neuroscience, 12, 125–131.

    Article  CAS  PubMed  Google Scholar 

  26. Fasano, C. A., Chambers, S. M., Lee, G., Tomishima, M. J., & Studer, L. (2010). Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell, 6, 336–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kriks, S., Shim, J.-W., Piao, J., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature, 480, 547–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirkeby, A., Grealish, S., Wolf Daniel, A., et al. (2012). Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports, 1, 703–714.

    Article  CAS  PubMed  Google Scholar 

  29. Xi, J., Liu, Y., Liu, H., Chen, H., Emborg, M. E., & Zhang, S.-C. (2012). Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells, 30, 1655–1663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Denham, M., Bye, C., Leung, J., Conley, B. J., Thompson, L. H., & Dottori, M. (2012). Glycogen synthase kinase 3beta and activin/nodal inhibition in human embryonic stem cells induces a pre-neuroepithelial state that is required for specification to a floor plate cell lineage. Stem Cells, 30, 2400–2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kirkeby, A., Nelander, J., & Parmar, M. (2012). Generating regionalized neuronal cells from pluripotency, a step-by-step protocol. Frontiers in Cellular Neuroscience, 6, 64.

    PubMed  Google Scholar 

  32. Lancaster, M. A., Renner, M., Martin, C.-A., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379.

    Article  CAS  PubMed  Google Scholar 

  33. Jo, J., Xiao, Y., Sun Alfred, X., et al. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell, 19, 248–257.

    Article  CAS  PubMed  Google Scholar 

  34. Sundberg, M., Bogetofte, H., Lawson, T., et al. (2013). Improved cell therapy protocols for Parkinson's disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells, 31, 1548–1562.

    Article  CAS  PubMed  Google Scholar 

  35. Ryan, S. D., Dolatabadi, N., Chan, S. F., et al. (2013). Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell, 155, 1351–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woodard, C. M., Campos, B. A., Kuo, S. H., et al. (2014). iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson's disease. Cell Reports, 9, 1173–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Doi, D., Samata, B., Katsukawa, M., et al. (2014). Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports, 2, 337–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hallett, P. J., Deleidi, M., Astradsson, A., et al. (2015). Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 16, 269–274.

  39. Wang, S., Zou, C., Fu, L., et al. (2015). Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov, 1, 15012.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Andersson, E., Tryggvason, U., Deng, Q., et al. (2006). Identification of intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393–405.

    Article  CAS  PubMed  Google Scholar 

  41. Friling, S., Andersson, E., Thompson, L. H., et al. (2009). Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 7613–7618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sánchez-Danés, A., Consiglio, A., Richaud, Y., et al. (2012). Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells. Human Gene Therapy, 23, 56–69.

    Article  PubMed  CAS  Google Scholar 

  43. Martinat, C., Bacci, J.-J., Leete, T., et al. (2006). Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proceedings of the National Academy of Sciences of the United States of America, 103, 2874–2879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Theka, I., Caiazzo, M., Dvoretskova, E., et al. (2013). Rapid generation of functional dopaminergic neurons from human induced pluripotent stem cells through a single-step procedure using cell lineage transcription factors. Stem Cells Transl Med, 2, 473–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sagal, J., Zhan, X., Xu, J., et al. (2014). Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons. Stem Cells Transl Med, 3, 888–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blau, H. M., Chiu, C. P., & Webster, C. (1983). Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell, 32, 1171–1180.

    Article  CAS  PubMed  Google Scholar 

  47. Takagi, N., Yoshida, M. A., Sugawara, O., & Sasaki, M. (1983). Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell, 34, 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  48. Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51, 987–1000.

    Article  CAS  PubMed  Google Scholar 

  49. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Südhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463, 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pang, Z. P., Yang, N., Vierbuchen, T., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, 476, 220–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Qiang, L., Fujita, R., Yamashita, T., et al. (2011). Directed conversion of Alzheimer's disease patient skin fibroblasts into functional neurons. Cell, 146, 359–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chanda, S., Ang Cheen, E., Davila, J., et al. (2014). Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Reports, 3, 282–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ambasudhan, R., Talantova, M., Coleman, R., et al. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9, 113–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yoo, A., Sun, A., Li, L., et al. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476, 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu, W., Qiu, B., Guan, W., et al. (2015). Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell, 17, 204–212.

    Article  CAS  PubMed  Google Scholar 

  56. Li, X., Zuo, X., Jing, J., et al. (2015). Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell, 17, 195–203.

    Article  CAS  PubMed  Google Scholar 

  57. Caiazzo, M., Dell'Anno, M. T., Dvoretskova, E., et al. (2011). Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature, 476, 224–227.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, H., Xu, Z., & Zhong, P., et al. (2015). Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun 6.

  59. Pfisterer, U., Kirkeby, A., Torper, O., et al. (2011). Direct conversion of human fibroblasts to dopaminergic neurons. Proceedings of the National Academy of Sciences of the United States of America, 108, 10343–10348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Torper, O., Ottosson Daniella, R., Pereira, M., et al. (2015). In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell Reports, 12, 474–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., & Chen, G. (2014). In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14, 188–202.

    Article  CAS  PubMed  Google Scholar 

  62. Kim, J., Efe, J. A., Zhu, S., et al. (2011). Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 108, 7838–7843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thier, M., Wörsdörfer, P., Lakes Yenal, B., et al. (2012). Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell, 10, 473–479.

    Article  CAS  PubMed  Google Scholar 

  64. Kumar, A., Declercq, J., Eggermont, K., Agirre, X., Prosper, F., & Verfaillie, C. (2012). Zic3 induces conversion of human fibroblasts to stable neural progenitor-like cells. Journal of Molecular Cell Biology, 4, 252–255.

    Article  PubMed  CAS  Google Scholar 

  65. Matsui, T., Takano, M., Yoshida, K., et al. (2012). Neural stem cells directly differentiated from partially reprogrammed fibroblasts rapidly acquire gliogenic competency. Stem Cells, 30, 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  66. Corti, S., Nizzardo, M., Simone, C., et al. (2012). Direct reprogramming of human astrocytes into neural stem cells and neurons. Experimental Cell Research, 318, 1528–1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xi, G., Hu, P., Qu, C., Qiu, S., Tong, C., & Ying, Q.-L. (2013). Induced neural stem cells generated from rat fibroblasts. Genomics, Proteomics & Bioinformatics, 11, 312–319.

    Article  CAS  Google Scholar 

  68. Wang, L., Wang, L., Huang, W., et al. (2013). Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods, 10, 84–89.

    Article  CAS  PubMed  Google Scholar 

  69. Lu, J., Liu, H., Huang, C., et al. (2013). Generation of integration-free and region-specific neural progenitors from primate fibroblasts. Cell Reports, 3, 1580–1591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu, S., Ambasudhan, R., Sun, W., et al. (2014). Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Research, 24, 126–129.

    Article  CAS  PubMed  Google Scholar 

  71. Kim, H.-S., Kim, J., Jo, Y., Jeon, D., & Cho, Y. S. (2014). Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors. Stem Cell Research, 12, 60–68.

    Article  CAS  PubMed  Google Scholar 

  72. Miura, T., Sugawara, T., Fukuda, A., et al. (2015). Generation of primitive neural stem cells from human fibroblasts using a defined set of factors. Biol Open, 4, 1595–1607.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lee, S.-T., Chu, K., Jung, K.-H., et al. (2011). Direct generation of neurosphere-like cells from human dermal fibroblasts. PloS One, 6, e21801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lujan, E., Chanda, S., Ahlenius, H., Südhof, T. C., & Wernig, M. (2012). Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 2527–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han, D. W., Tapia, N., Hermann, A., et al. (2012). Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell, 10, 465–472.

    Article  CAS  PubMed  Google Scholar 

  76. Ring, K. L., Tong Leslie, M., Balestra Maureen, E., et al. (2012). Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell, 11, 100–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maucksch, C., Firmin, E., Butler-Munro, C., Montgomery, J. M., Dottori, M., & Connor, B. (2012). Non-viral generation of neural precursor-like cells from adult human fibroblasts. J Stem Cells Regen Med, 8, 1–9.

    Google Scholar 

  78. Sheng, C., Zheng, Q., Wu, J., et al. (2012). Generation of dopaminergic neurons directly from mouse fibroblasts and fibroblast-derived neural progenitors. Cell Research, 22, 769–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sheng, C., Zheng, Q., Wu, J., et al. (2012). Direct reprogramming of sertoli cells into multipotent neural stem cells by defined factors. Cell Research, 22, 208–218.

    Article  CAS  PubMed  Google Scholar 

  80. Tian, C., Ambroz, R., Sun, L., et al. (2012). Direct conversion of dermal fibroblasts into neural progenitor cells by a novel cocktail of defined factors. Current Molecular Medicine, 12, 126–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tian, C., Liu, Q., Ma, K., et al. (2013). Characterization of induced neural progenitors from skin fibroblasts by a novel combination of defined factors. Scientific Reports, 3, 1345.

    PubMed  PubMed Central  Google Scholar 

  82. Tian, C., Li, Y., Huang, Y., et al. (2015). Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Scientific Reports, 5, 12622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mirakhori, F., Zeynali, B., Rassouli, H., Salekdeh, G. H., & Baharvand, H. (2015). Direct conversion of human fibroblasts into dopaminergic neural progenitor-like cells using TAT-mediated protein transduction of recombinant factors. Biochemical and Biophysical Research Communications, 459, 655–661.

    Article  CAS  PubMed  Google Scholar 

  84. Mirakhori, F., Zeynali, B., Rassouli, H., et al. (2015). Induction of neural progenitor-like cells from human fibroblasts via a genetic material-free approach. PloS One, 10, e0135479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lim, M. S., Lee, S. Y., & Park, C. H. (2015). FGF8 is essential for functionality of induced neural precursor cell-derived dopaminergic neurons. Int J Stem Cells, 8, 228–234.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lim, M.-S., Chang, M.-Y., Kim, S.-M., et al. (2015). Generation of dopamine neurons from rodent fibroblasts through the expandable neural precursor cell stage. The Journal of Biological Chemistry, 290, 17401–17414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yu, K. R., Shin, J. H., Kim, J. J., Koog, M. G., Lee, J. Y., & Choi, S. W. (2015). Rapid and efficient direct conversion of human adult somatic cells into neural stem cells by HMGA2/let-7b. Cell Reports, 10, 441–452.

    Article  CAS  Google Scholar 

  88. Zou, Q., Yan, Q., Zhong, J., et al. (2014). Direct conversion of human fibroblasts into neuronal restricted progenitors. The Journal of Biological Chemistry, 289, 5250–5260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cheng, L., Hu, W., Qiu, B., et al. (2014). Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Research, 24, 665–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, M., Lin, Y. H., Sun, Y. J., et al. (2016). Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell, 18, 653–667.

    Article  CAS  PubMed  Google Scholar 

  91. Zheng, J., Choi, K. A., Kang, P. J., et al. (2016). A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells. Biochemical and Biophysical Research Communications, 476, 42–48.

    Article  CAS  PubMed  Google Scholar 

  92. Efe, J. A., Hilcove, S., Kim, J., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13, 215–222.

    Article  CAS  PubMed  Google Scholar 

  93. Maza, I., Caspi, I., Zviran, A., et al. (2015). Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotech, 33, 769–774.

    Article  CAS  Google Scholar 

  94. Bar-Nur, O., Verheul, C., Sommer, A. G., et al. (2015). Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotech, 33, 761–768.

    Article  CAS  Google Scholar 

  95. Weissbein, U., Ben-David, U., & Benvenisty, N. (2014). Virtual karyotyping reveals greater chromosomal stability in neural cells derived by transdifferentiation than those from stem cells. Cell Stem Cell, 15, 687–691.

    Article  CAS  PubMed  Google Scholar 

  96. Maucksch, C., Jones, K., & Connor, B. (2013). Concise review: the involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells. Stem Cells Transl Med, 2, 579–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bernal, J. A. (2013). RNA-based tools for nuclear reprogramming and lineage-conversion: towards clinical applications. Journal of Cardiovascular Translational Research, 6, 956–968.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hou, P., Li, Y., Zhang, X., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341, 651–654.

    Article  CAS  PubMed  Google Scholar 

  99. Devine, M. J., Ryten, M., Vodicka, P., et al. (2011). Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Communications, 2, 440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Byers, B., Cord, B., Nguyen, H. N., et al. (2011). SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PloS One, 6, e26159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Soldner, F., Laganière, J., Cheng, A., et al. (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146, 318–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sanders, L., Laganière, J., Cooper, O., et al. (2013). LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiology of Disease, 62, 381–386.

    Article  PubMed  CAS  Google Scholar 

  103. Liu, G. H., Qu, J., Suzuki, K., et al. (2012). Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature, 491, 603–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shaltouki, A., Sivapatham, R., Pei, Y., et al. (2015). Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient-specific and PARK2 knockout isogenic iPSC lines. Stem Cell Reports, 4, 847–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nguyen Ha, N., Byers, B., Cord, B., et al. (2011). LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell, 8, 267–280.

    Article  PubMed  CAS  Google Scholar 

  106. Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., et al. (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease. EMBO Molecular Medicine, 4, 380–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Reinhardt, P., Schmid, B., Burbulla, L. F., et al. (2013). Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell, 12, 354–367.

    Article  CAS  PubMed  Google Scholar 

  108. Orenstein, S. J., Kuo, S.-H. H., Tasset, I., et al. (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 16, 394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cooper, O., Seo, H., Andrabi, S., et al. (2012). Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Science Translational Medicine, 4, 141–190.

    Article  CAS  Google Scholar 

  110. Imaizumi, Y., Okada, Y., Akamatsu, W., et al. (2012). Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue. Molecular Brain, 5, 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Grenier, K., McLelland, G. L., & Fon, E. A. (2013). Parkin-and PINK1-dependent mitophagy in neurons: will the real pathway please stand up? Frontiers in Neurology, 4, 1–8.

    Article  CAS  Google Scholar 

  112. Seibler, P., Graziotto, J., Jeong, H., Simunovic, F., Klein, C., & Krainc, D. (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. The Journal of Neuroscience, 31, 5970–5976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rakovic, A., Shurkewitsch, K., Seibler, P., et al. (2013). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. The Journal of Biological Chemistry, 288, 2223–2237.

    Article  CAS  PubMed  Google Scholar 

  114. Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Miller, J. D., Ganat, Y. M., Kishinevsky, S., et al. (2013). Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell, 13, 691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sulzer, D. (2007). Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends in Neurosciences, 30, 244–250.

    Article  CAS  PubMed  Google Scholar 

  117. Collier, T. J., Kanaan, N. M., & Kordower, J. H. (2011). Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nature Reviews. Neuroscience, 12, 359–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barlow, B. K., Cory-Slechta, D. A., Richfield, E. K., & Thiruchelvam, M. (2007). The gestational environment and Parkinson's disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reproductive Toxicology, 23, 457–470.

    Article  CAS  PubMed  Google Scholar 

  119. Fernandez-Santiago, R., Carballo-Carbajal, I., Castellano, G., et al. (2015). Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Molecular Medicine, 7, 1529–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Frobel, J., Hemeda, H., Lenz, M., et al. (2014). Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells. Stem Cell Reports, 3, 414–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Studer, L., Vera, E., & Cornacchia, D. (2015). Programming and reprogramming cellular age in the era of induced pluripotency. Cell Stem Cell, 16, 591–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bardy, C., van den Hurk, M., Eames, T., et al. (2015). Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 112, E2725–E2E34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, Y., Pak, C., Han, Y., et al. (2013). Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78, 785–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yang, Y., Jiao, J., Gao, R., et al. (2015). Enhanced rejuvenation in induced pluripotent stem cell-derived neurons compared with directly converted neurons from an aged mouse. Stem Cells and Development, 24, 2767–2777.

    Article  CAS  PubMed  Google Scholar 

  125. Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews. Neuroscience, 17, 424–437.

    Article  CAS  PubMed  Google Scholar 

  126. Mertens, J., Paquola Apuã, C. M., Ku, M., et al. (2015). Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell, 17, 705–718.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bronwen Connor.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Playne, R., Connor, B. Understanding Parkinson’s Disease through the Use of Cell Reprogramming. Stem Cell Rev and Rep 13, 151–169 (2017). https://doi.org/10.1007/s12015-017-9717-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9717-5

Keywords

Navigation