Skip to main content

Advertisement

Log in

Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in Placenta and Bone Marrow-Derived Mesenchymal Stromal Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Many controversial results exist when comparing mesenchymal stromal cells (MSCs) derived from different sources. Reasons include not only variables in tissue origin, but also methods of cell preparation or choice of expansion media which can strongly influence the expression and hence, function of the cells. In this short report we aimed to investigate the expression of the cell anchoring proteins desmoglein 2, desmocollin 3 and plakophilin 2 in early passage placenta-derived MSCs of fetal (fetal pMSCs) and maternal (maternal pMSCs) origins versus adult bone marrow-derived MSCs (bmMSCs) that were expanded and cultured under the same good manufacturing practice (GMP) conditions. Comprehensive gene expression microarray analysis profiling indicated differential expression of these genes in the different MSC-derived types with fetal pMSCs expressing the highest levels of PKP2, DSC3 and DSG2, followed by maternal pMSCs, while bmMSCs expressed the lowest levels. A higher expression of PKP2 and DSC3 genes in fetal pMSCs was confirmed by qRT-PCR suggesting neonatal increases in the expression of these desmosomal genes vs. adult MSCs. Intracellular desmocollin 3 and desmoglein 2 expression was observed by flow cytometry and cytoplasmic plakophilin 2 by immunofluorescence in all three MSC sources. These data suggest that fetal pMSCs, maternal pMSCs and bmMSCs may anchor intermediate filaments to the plasma membrane via desmocollin 3, desmoglein 2 and plakophilin 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Delva, E., Tucker, D. K., & Kowalczyk, A. P. (2009). The desmosome. Cold Spring Harbor Perspectives in Biology. doi:10.1101/cshperspect.a002543.

    PubMed  PubMed Central  Google Scholar 

  2. Kowalczyk, A. P., & Green, K. J. (2013). Structure, function, and regulation of desmosomes. Progress in Molecular Biology and Translational Science. doi:10.1016/B978-0-12-394311-8.00005-4.

    PubMed  PubMed Central  Google Scholar 

  3. Eshkind, L., Tian, Q., Schmidt, A., Franke, W. W., Windoffer, R., & Leube, R. E. (2002). Loss of desmoglein 2 suggests essential functions for early embryonic development and proliferation of embryonal stem cells. European Journal of Cell Biology. doi:10.1078/0171-9335-00278.

    PubMed  Google Scholar 

  4. Klingemann, H., Matzilevich, D., & Marchand, J. (2008). Mesenchymal stem cells - sources and clinical applications. Transfusion Medicine and Hemotherapy. doi:10.1159/000142333.

    PubMed  PubMed Central  Google Scholar 

  5. Rickelt, S., Winter-Simanowski, S., Noffz, E., Kuhn, C., & Franke, W. W. (2009). Upregulation of plakophilin-2 and its acquisition to adherens junctions identifies a novel molecular ensemble of cell-cell-attachment characteristic for transformed mesenchymal cells. International Journal of Cancer. doi:10.1002/ijc.24552.

    PubMed  Google Scholar 

  6. Wuchter, P., Boda-Heggemann, J., Straub, B. K., Grund, C., Kuhn, C., Krause, U., Seckinger, A., Peitsch, W. K., Spring, H., Ho, A. D., & Franke, W. W. (2007). Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell and Tissue Research. doi:10.1007/s00441-007-0379-5.

    PubMed  Google Scholar 

  7. Den, Z., Cheng, X., Merched-Sauvage, M., & Koch, P. J. (2006). Desmocollin 3 is required for pre-implantation development of the mouse embryo. Journal of Cell Science. doi:10.1242/jcs.02769.

    PubMed  Google Scholar 

  8. Grossmann, K. S., Grund, C., Huelsken, J., Behrend, M., Erdmann, B., Franke, W. W., & Birchmeier, W. (2004). Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. The Journal of Cell Biology. doi:10.1083/jcb.200402096.

    PubMed  PubMed Central  Google Scholar 

  9. Bierkamp, C., McLaughlin, K. J., Schwarz, H., Huber, O., & Kemler, R. (1996). Embryonic heart and skin defects in mice lacking plakoglobin. Developmental Biology. doi:10.1006/dbio.1996.0346.

    PubMed  Google Scholar 

  10. Sacchetti, B., Funari, A., Remoli, C., Giannicola, G., Kogler, G., Liedtke, S., Cossu, G., Serafini, M., Sampaolesi, M., Tagliafico, E., Tenedini, E., Saggio, I., Robey, P. G., Riminucci, M., & Bianco, P. (2016). No identical "mesenchymal stem cells" at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports. doi:10.1016/j.stemcr.2016.05.011.

    PubMed  PubMed Central  Google Scholar 

  11. Elahi, K. C., Klein, G., Avci-Adali, M., Sievert, K. D., MacNeil, S., & Aicher, W. K. (2016). Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells International. doi:10.1155/2016/5646384.

    PubMed  Google Scholar 

  12. Ulrich, C., Abruzzese, T., Maerz, J. K., Ruh, M., Amend, B., Benz, K., Rolauffs, B., Abele, H., Hart, M. L., & Aicher, W. K. (2015). Human placenta-derived CD146-positive mesenchymal stromal cells display a distinct osteogenic differentiation potential. Stem Cells and Development. doi:10.1089/scd.2014.0465.

    PubMed  Google Scholar 

  13. Pilz, G. A., Ulrich, C., Ruh, M., Abele, H., Schäfer, R., Kluba, T., Bühring, H. J., Rolauffs, B., & Aicher, W. K. (2011). Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells and Development. doi:10.1089/scd.2010.0308.

    PubMed  Google Scholar 

  14. Ulrich, C., Rolauffs, B., Abele, H., Bonin, M., Nieselt, K., Hart, M. L., & Aicher, W. K. (2013). Low osteogenic differentiation potential of placenta-derived mesenchymal stromal cells correlates with low expression of the transcription factors Runx2 and Twist2. Stem Cells and Development. doi:10.1089/scd.2012.0693.

    PubMed  PubMed Central  Google Scholar 

  15. Brun, J., Abruzzese, T., Rolauffs, B., Aicher, W. K., & Hart, M. L. (2016). Choice of xenogenic-free expansion media significantly influences the myogenic differentiation potential of human bone marrow-derived mesenchymal stromal cells. Cytotherapy. doi:10.1016/j.jcyt.2015.11.019.

    PubMed  Google Scholar 

  16. Brun, J., Lutz, K. A., Neumayer, K. M., Klein, G., Seeger, T., Uynuk-Ool, T., Worgotter, K., Schmid, S., Kraushaar, U., Guenther, E., Rolauffs, B., Aicher, W. K., & Hart, M. L. (2015). Smooth muscle-like cells generated from human mesenchymal stromal cells display marker gene expression and electrophysiological competence comparable to bladder smooth muscle cells. PloS One. doi:10.1371/journal.pone.0145153.

    Google Scholar 

  17. Hart, M. L., Brun, J., Lutz, K., Rolauffs, B., & Aicher, W. K. (2014). Do we need standardized, GMP-compliant cell culture procedures for pre-clinical in vitro studies involving mesenchymal stem/stromal cells? Journal of Tissue Science & Engineering. doi:10.4172/2157-7552.1000135.

    Google Scholar 

  18. Pilz, G. A., Braun, J., Ulrich, C., Felka, T., Warstat, K., Ruh, M., Schewe, B., Abele, H., Larbi, A., & Aicher, W. K. (2011). Human mesenchymal stromal cells express CD14 cross-reactive epitopes. Cytometry. doi:10.1002/cyto.a.21073.

    PubMed  Google Scholar 

  19. Felka, T., Schäfer, R., De Zwart, P., & Aicher, W. K. (2010). Animal serum-free expansion and differentiation of human mesenchymal stromal cells. Cytotherapy. doi:10.3109/14653240903470647.

    PubMed  Google Scholar 

  20. Nagele, U., Maurer, S., Feil, G., Bock, C., Krug, J., Sievert, K. D., & Stenzl, A. (2008). In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. European Urology. doi:10.1016/j.eururo.2008.01.072.

    Google Scholar 

  21. Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. doi:10.1093/bioinformatics/19.2.185.

    PubMed  Google Scholar 

  22. Battke, F., Symons, S., & Nieselt, K. (2010). Mayday--integrative analytics for expression data. BMC Bioinformatics. doi:10.1186/1471-2105-11-121.

    PubMed  PubMed Central  Google Scholar 

  23. Laurence, S., Baskin, S.H. editor: Springer US. (1999). Advances in experimental medicine and Biology series. Advances in Bladder Research. 1 ed.

  24. Jost, S.P., Gosling, J.A., Dixon, J.S. (1989). The morphology of normal human bladder urothelium. Journal of Anatomy. PMC1256824.

  25. Chen, X., Bonne, S., Hatzfeld, M., van Roy, F., & Green, K. J. (2002). Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta -catenin signaling. The Journal of Biological Chemistry. doi:10.1074/jbc.M108765200.

    PubMed  Google Scholar 

  26. Billing, A. M., Ben Hamidane, H., Dib, S. S., Cotton, R. J., Bhagwat, A. M., Kumar, P., Hayat, S., Yousri, N. A., Goswami, N., Suhre, K., Rafii, A., & Graumann, J. (2016). Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers. Scientific Reports. doi:10.1038/srep21507.

    PubMed  PubMed Central  Google Scholar 

  27. Roson-Burgo, B., Sanchez-Guijo, F., Del Canizo, C., & De Las Rivas, J. (2014). Transcriptomic portrait of human mesenchymal stromal/stem cells isolated from bone marrow and placenta. BMC Genomics. doi:10.1186/1471-2164-15-910.

    Google Scholar 

  28. Franke, W. W., Rickelt, S., Barth, M., & Pieperhoff, S. (2009). The junctions that don’t fit the scheme: special symmetrical cell-cell junctions of their own kind. Cell and Tissue Research. doi:10.1007/s00441-009-0849-z.

    PubMed Central  Google Scholar 

  29. Al-Jassar, C., Bikker, H., Overduin, M., & Chidgey, M. (2013). Mechanistic basis of desmosome-targeted diseases. Journal of Molecular Biology. doi:10.1016/j.jmb.2013.07.035.

    PubMed  PubMed Central  Google Scholar 

  30. Wahl, J.K., Sacco, P.A., McGranahan-Sadler, T.M., Sauppe, L.M., Wheelock, M.J., Johnson, K.R. (1996). Plakoglobin domains that define its association with the desmosomal cadherins and the classical cadherins: identification of unique and shared domains. Journal of Cell Science. PMID: 8743961.

  31. Witcher, L.L., Collins, R., Puttagunta, S., Mechanic, S.E., Munson, M., Gumbiner, B., Cowin, P. (1996). Desmosomal cadherin binding domains of plakoglobin. The Journal of Biological Chemistry. PMID: 8631907.

  32. Troyanovsky, S.M., Troyanovsky, R.B., Eshkind, L.G., Leube, R.E., Franke, W.W. (1994). Identification of amino acid sequence motifs in desmocollin, a desmosomal glycoprotein, that are required for plakoglobin binding and plaque formation. Proceedings of the National Academy of Sciences. PMID: 7971964.

  33. Bass-Zubek, A. E., Godsel, L. M., Delmar, M., & Green, K. J. (2009). Plakophilins: multifunctional scaffolds for adhesion and signaling. Current Opinion in Cell Biology. doi:10.1016/j.ceb.2009.07.002.

    PubMed  PubMed Central  Google Scholar 

  34. Calkins, C. C., Hoepner, B. L., Law, C. M., Novak, M. R., Setzer, S. V., Hatzfeld, M., & Kowalczyk, A. P. (2003). The Armadillo Family protein p0071 is a VE-cadherin- and desmoplakin-binding protein. The Journal of Biological Chemistry. doi:10.1074/jbc.M205693200.

    Google Scholar 

  35. Hatzfeld, M., Green, K. J., & Sauter, H. (2003). Targeting of p0071 to desmosomes and adherens junctions is mediated by different protein domains. Journal of Cell Science. doi:10.1242/jcs.00275.

    Google Scholar 

  36. Hofmann, I., Schlechter, T., Kuhn, C., Hergt, M., & Franke, W. W. (2009). Protein p0071 - an armadillo plaque protein that characterizes a specific subtype of adherens junctions. Journal of Cell Science. doi:10.1242/jcs.043927.

    PubMed Central  Google Scholar 

  37. Green, K. J., & Gaudry, C. A. (2000). Are desmosomes more than tethers for intermediate filaments? Nature reviews. Molecular Cell Biology. doi:10.1038/35043032.

    PubMed  Google Scholar 

  38. Getsios, S., Huen, A. C., & Green, K. J. (2004). Working out the strength and flexibility of desmosomes. Nature Reviews. Molecular Cell Biology. doi:10.1038/nrm1356.

    PubMed  Google Scholar 

  39. Leach, L. (2002). The phenotype of the human materno-fetal endothelial barrier: molecular occupancy of paracellular junctions dictate permeability and angiogenic plasticity. Journal of Anatomy. doi:10.1046/j.1469-7580.2002.00062.x.

    Google Scholar 

  40. Green, K. J., & Simpson, C. L. (2007). Desmosomes: new perspectives on a classic. The Journal of Investigative Dermatology. doi:10.1038/sj.jid.5701015.

    Google Scholar 

  41. Johnson, J. L., Najor, N. A., & Green, K. J. (2014). Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harbor Perspectives in Medicine. doi:10.1101/cshperspect.a015297.

    Google Scholar 

  42. Khudiakov, A. A., Kostina, D. A., Kostareva, A. A., Tomilin, A. N., & Malashicheva, A. B. (2016). The effect of plakophilin-2 gene mutations on activity of the canonical Wnt signaling pathway. Cells and Tissue Biology. doi:10.1134/S1990519X16020061.

    Google Scholar 

  43. Jin, H. J., Bae, Y. K., Kim, M., Kwon, S. J., Jeon, H. B., Choi, S. J., Kim, S. W., Yang, Y. S., Oh, W., & Chang, J. W. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences. doi:10.3390/ijms140917986.

    Google Scholar 

  44. Zhang, Z. Y., Teoh, S. H., Chong, M. S., Schantz, J. T., Fisk, N. M., Choolani, M. A., & Chan, J. (2009). Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells. doi:10.1634/stemcells.2008-0456.

    Google Scholar 

  45. Hart, M. L., Kaupp, M., Brun, B., & Aicher, W. K. (2017). Comparative phenotypic transcriptional characterization of human full-term placenta-derived mesenchymal stromal cells compared to bone marrow-derived mesenchymal stromal cells after differentiation in myogenic medium. Placenta. doi:10.1016/j.placenta.2016.11.007.

    PubMed  Google Scholar 

  46. Maerz, J. K., Roncoroni, L. P., Goldeck, D., Abruzzese, T., Kalbacher, H., Rolauffs, B., DeZwart, P., Nieselt, K., Hart, M. L., Klein, G., & Aicher, W. K. (2016). Bone marrow-derived mesenchymal stromal cells differ in their attachment to fibronectin-derived peptides from term placenta-derived mesenchymal stromal cells. Stem Cell Research & Therapy. doi:10.1186/s13287-015-0243-6.

    Google Scholar 

Download references

Acknowledgements

The authors thank Tanja Abruzzese and Jan. Maerz for their excellent technical support and expert training of the students involved in this project. This study was funded by the DFG (KFO273) and in part by institutional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie L. Hart.

Ethics declarations

Conflict of Interest

The authors indicate no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hart, M.L., Rusch, E., Kaupp, M. et al. Expression of Desmoglein 2, Desmocollin 3 and Plakophilin 2 in Placenta and Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cell Rev and Rep 13, 258–266 (2017). https://doi.org/10.1007/s12015-016-9710-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9710-4

Keywords

Navigation