Skip to main content
Log in

CXCL12/SDF-1-Dependent Retinal Migration of Endogenous Bone Marrow-Derived Stem Cells Improves Visual Function after Pharmacologically Induced Retinal Degeneration

Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mobilized bone marrow-derived stem cells (BMSC) have been discussed as an alternative strategy for endogenous repair. Thereby, different approaches for BMSC mobilization have been pursued. Herein, the role of a newly discovered oligonucleotide for retinal homing and regeneration capability of BMSCs was investigated in the sodium iodate (NaIO3) model of retinal degeneration. Mobilization was achieved in GFP-chimera with NOX-A12, a CXC-motif chemokine ligand 12 (CXCL12)/stromal cell-derived factor 1 (SDF-1)-neutralizing L-aptamer. BMSC homing was directed by intravitreal SDF-1 injection. Visual acuity was measured using the optokinetic reflex. Paraffin cross sections were stained with hematoxylin and eosin for retinal thickness measurements. Immunohistochemistry was performed to investigate the expression of cell-specific markers after mobilization. A single dose of NOX-A12 induced significant mobilization of GFP+ cells which were found in all layers within the degenerating retina. An additional intravitreal injection of SDF-1 increased migration towards the site of injury. Thereby, the number of BMSCs (Sca-1+) found in the damaged retina increased whereas a decrease of activated microglia (Iba-1+) was found. The mobilization led to significantly increased visual acuity. However, no significant changes in retinal thickness or differentiation towards retinal cell types were detected. Systemic mobilization by a single dose of NOX-A12 showed increased homing of BMSCs into the degenerated retina, which was associated with improved visual function when injection of SDF-1 was additionally performed. The redistribution of the cells to the site of injury combined with their observed beneficial effects support the endogenous therapeutic strategy for retinal repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Atmaca-Sonmez, P., Li, Y., Yamauchi, Y., et al. (2006). Systemically transferred hematopoietic stem cells home to the subretinal space and express RPE-65 in a mouse model of retinal pigment epithelium damage. Experimental Eye Research, 83, 1295–1302.

    Article  CAS  PubMed  Google Scholar 

  2. Catacchio, I., Berardi, S., Reale, A., et al. (2013). Evidence for bone marrow adult stem cell plasticity: properties, molecular mechanisms, negative aspects, and clinical applications of hematopoietic and mesenchymal stem cells transdifferentiation. Stem Cells International, 2013, 589139.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Darabi, S., Tiraihi, T., Delshad, A., et al. (2013). A new multistep induction protocol for the transdifferentiation of bone marrow stromal stem cells into GABAergic neuron-like cells. Iranian Biomedical Journal, 17, 8–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Del Priore, L. V., Kaplan, H. J., Tezel, T. H., et al. (2001). RPE cell transplantation after sub-foveal membranectomy in AMD: Clinicopathologic correlation. American Journal of Ophthalmology, 131, 472–480.

    Article  CAS  PubMed  Google Scholar 

  5. Duan, P., Xu, H., Zeng, Y., et al. (2013). Human bone marrow stromal cells can differentiate to a retinal pigment epithelial phenotype when Co-cultured with pig retinal pigment epithelium using a Transwell system. Cellular Physiology and Biochemistry, 31, 601–613.

    Article  CAS  PubMed  Google Scholar 

  6. Enzmann, V., Row, B. W., Yamauchi, Y., et al. (2006). Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Experimental Eye Research, 82, 441–448.

    Article  CAS  PubMed  Google Scholar 

  7. Falanga, V., Iwamoto, S., Chartier, M., et al. (2007). Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Engineering, 13, 1299–1312.

    Article  CAS  PubMed  Google Scholar 

  8. Falkner-Radler, C. I., Krebs, I., Glittenberg, C., et al. (2011). Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE-choroid sheet and RPE cell-suspension in a randomised clinical study. The British Journal of Ophthalmology, 95, 370–375.

    Article  PubMed  Google Scholar 

  9. Franco, L. M., Zulliger, R., Wolf-Schnurrbusch, U. E., et al. (2009). Decreased visual function after patchy loss of retinal pigment epithelium induced by low-dose sodium iodate. Investigative Ophthalmology & Visual Science, 50, 4004–4010.

    Article  Google Scholar 

  10. Gouras, P., & Algvere, P. V. (1996). Retinal cell transplantation in the macula: new techniques. Vision Research, 36, 4121–4125.

    Article  CAS  PubMed  Google Scholar 

  11. Harris, J. R., Fisher, R., Jorgensen, M., et al. (2009). CD133 progenitor cells from the bone marrow contribute to retinal pigment epithelium repair. Stem Cells, 27, 457–466.

    Article  PubMed  Google Scholar 

  12. Hokari, M., Kuroda, S., Shichinohe, H., et al. (2008). Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. Journal of Neuroscience Research, 86, 1024–1035.

    Article  CAS  PubMed  Google Scholar 

  13. Kale, S., Karihaloo, A., Clark, P. R., et al. (2003). Bone marrow stem cells contribute to repair of the ischemically injured renal tube. The Journal of Clinical Investigation, 112, 42–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaneko, H., Nishiguchi, K. M., Nakamura, M., et al. (2008). Characteristics of bone marrow-derived microglia in the normal and injured retina. Investigative Ophthalmology & Visual Science, 49, 4162–4168.

    Article  Google Scholar 

  15. Kohen, L., Enzmann, V., Faude, F., et al. (1997). Mechanisms of graft rejection in the transplantation of retinal pigment epithelial cells. Ophthalmic Research, 29, 298–304.

    Article  CAS  PubMed  Google Scholar 

  16. Kollet, O., Shivitel, S., Chen, Y. Q., et al. (2003). HGF, SDF-1 and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. The Journal of Clinical Investigation, 112, 160–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Korte, G. E., Reppucci, V., & Henkind, P. (1984). RPE destruction causes choriocapillary atrophy. Investigative Ophthalmology Visual Science, 25, 1135–1145.

    CAS  PubMed  Google Scholar 

  18. Kucia, M., Dawn, B., Hunt, G., et al. (2004a). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circulation Research, 95, 1191–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kucia, M., Ratajczak, J., Reca, R., et al. (2004b). Tissue-specific muscle, neural, and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells, Molecules & Diseases, 32, 52–57.

    Article  CAS  Google Scholar 

  20. Lapidot, T., & Kollet, O. (2002). The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m null mice. Leukemia, 16, 1992–2003.

    Article  CAS  PubMed  Google Scholar 

  21. Lau, T. T., & Wang, D. A. (2011). Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opinion on Biological Therapy, 11, 189–197.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y., Reca, R. G., Atmaca-Sonmez, P., et al. (2006). Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells. Investigative Ophthalmology & Visual Science, 47, 1646–1652.

    Article  Google Scholar 

  23. Li, Y., Atmaca-Sonmez, P., Schanie, C. L., et al. (2007). Endogenous bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Investigative Ophthalmology & Visual Science, 48, 4321–4327.

    Article  Google Scholar 

  24. Li, L., Eter, N., & Heiduschka, P. (2015). The microglia in healthy and diseased retina. Experimental Eye Research, 136, 116–130.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, Y., Gao, L., Zuba-Surma, E. K., et al. (2009). Identification of small Sca-1(+), Lin(−), CD45(−) multipotential cells in the neonatal murine retina. Experimental Hematology, 37, 1096–1107 1107 e1091.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, N., Patzak, A., & Zhang, J. (2013). CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. American Journal of Physiology. Renal Physiology, 305, F1064–F1073.

    Article  CAS  PubMed  Google Scholar 

  27. Machalinska, A., Lubinski, W., Klos, P., et al. (2010). Sodium iodate selectively injuries the posterior pole of the retina in a dose-dependent manner: morphological and electrophysiological study. Neurochemical Research, 35, 1819–1827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Machalinska, A., Klos, P., Baumert, B., et al. (2011). Stem cells are mobilized from the bone marrow into the peripheral circulation in response to retinal pigment epithelium damage--a pathophysiological attempt to induce endogenous regeneration. Current Eye Research, 36, 663–672.

    Article  PubMed  Google Scholar 

  29. Machalinska, A., Lejkowska, R., Duchnik, M., et al. (2014). Dose-dependent retinal changes following sodium iodate administration: application of spectral-domain optical coherence tomography for monitoring of retinal injury and endogenous regeneration. Current Eye Research, 39, 1033–1041.

    Article  CAS  PubMed  Google Scholar 

  30. Mathivanan, I., Trepp, C., Brunold, C., et al. (2015). Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Experimental Cell Research, 333, 11–20.

    Article  CAS  PubMed  Google Scholar 

  31. Okada, S., Nakauchi, H., Nagayoshi, K., et al. (1992). In vivo and in vitro stem cell function of c-kit and Sca-1-positive murine hematopoietic stem cells. Blood, 80, 3044–3050.

    CAS  PubMed  Google Scholar 

  32. Petit, I., Szyper-Kravitz, M., Nagler, A., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3, 687–787.

    Article  CAS  PubMed  Google Scholar 

  33. Ratajczak, M. Z., Zuba-Surma, E., Wojakowski, W., et al. (2014). Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia, 28, 473–484.

    Article  CAS  PubMed  Google Scholar 

  34. Ritfeld, G. J., Patel, A., Chou, A., et al. (2015). The role of brain-derived neurotrophic factor in bone marrow stromal cell-mediated spinal cord repair. Cell Transplantation, 24, 2209–2220.

    Article  PubMed  Google Scholar 

  35. Sarkar, A., Tatlidede, S., Scherer, S. S., et al. (2011). Combination of stromal cell-derived factor-1 and collagen-glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice. Wound Repair and Regeneration, 19, 71–79.

    Article  PubMed  Google Scholar 

  36. Schwartz, S. D., Regillo, C. D., Lam, B. L., et al. (2015). Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet, 385, 509–516.

    Article  PubMed  Google Scholar 

  37. Sugita, S., Iwasaki, Y., Makabe, K., et al. (2016). Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Reports, 7, 619–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Szade, K., Zuba-Surma, E., Rutkowski, A. J., et al. (2011). CD45- CD14 + CD34 + Murine bone marrow low-adherent mesenchymal primitive cells preserve Multilineage differentiation potential in long-term in vitro culture. Molecules and Cells, 31, 497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tezel, T. H., Del Priore, L. V., & Kaplan, H. J. (1999). Fate of human retinal pigment epithelium seeded onto layers of human Bruch's membrane. Investigative Ophthalmology & Visual Science, 40, 467–476.

    CAS  Google Scholar 

  40. Tezel, T. H., Del Priore, L. V., Berger, A. S., et al. (2007). Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. American Journal of Ophthalmology, 143, 584–595.

    Article  PubMed  Google Scholar 

  41. Vater, A., & Klussmann, S. (2015). Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer((R)) therapeutics. Drug Discovery Today, 20, 147–155.

    Article  CAS  PubMed  Google Scholar 

  42. Vater, A., Sahlmann, J., Kroger, N., et al. (2013). Hematopoietic Stem and Progenitor Cell Mobilization in Mice and humans by a First-in-Class Mirror-image Oligonucleotide Inhibitor of CXCL12. Clinical Pharmacology and Therapeutics.

  43. Watanabe, S., Uchida, K., Nakajima, H., et al. (2015). Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells, 33, 1902–1914.

    Article  CAS  PubMed  Google Scholar 

  44. Yellowley, C. (2013). CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. Bonekey Rep, 2, 300.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhu, D., Deng, X., Spee, C., et al. (2011). Polarized Secretion of PEDF from Human Embryonic Stem Cell-Derived RPE Promotes Retinal Progenitor Cell Survival. Investigative Ophthalmology Visual Science, 52.

Download references

Acknowledgements

The authors thank Monika Kilchenmann, Agathe Duda and Federica Bisignani for their excellent technical assistance. This work was partly supported by grants from the Swiss National Science Foundation (310000-119894), the Velux Foundation, NOXXON Pharma AG and the Berne University Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Enzmann.

Ethics declarations

Conflict of Interest

AV and AK are employees of NOXXON Pharma which holds or has applied for patents relating to the content of the manuscript.

Ethics Approval

All animals were treated according to the ARVO statement for the use of animals in vision und ophthalmic research and after governmental approval.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enzmann, V., Lecaudé, S., Kruschinski, A. et al. CXCL12/SDF-1-Dependent Retinal Migration of Endogenous Bone Marrow-Derived Stem Cells Improves Visual Function after Pharmacologically Induced Retinal Degeneration. Stem Cell Rev and Rep 13, 278–286 (2017). https://doi.org/10.1007/s12015-016-9706-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9706-0

Keywords

Navigation