Skip to main content
Log in

Constitutive Expression of Inducible Cyclic Adenosine Monophosphate Early Repressor (ICER) in Cycling Quiescent Hematopoietic Cells: Implications for Aging Hematopoietic Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Despite extensive insights on the interaction between hematopoietic stem cells (HSCs) and the supporting bone marrow (BM) stroma in hematopoietic homeostasis there remains unanswered questions on HSC regulation. We report on the mechanism by which HSCs attain cycling quiescence by addressing a role for inducible cyclic AMP early repressor (ICER). ICER negatively transcriptional regulators of cAMP activators such as CREM and CREB. These activators can be induced by hematopoietic stimulators such as cytokines. We isolated subsets of hematopoietic cells from ten healthy donors: CD34+CD38/c-kit + (primitive progenitor), CD34+CD38+/c-kitlow (mature progenitor) and CD34CD38+/−/c-kitlow/− (differentiated lineage-). The relative maturity of the progenitors were verified in long-term culture initiating assay. Immunoprecipitation indicated the highest level of ICER in the nuclear extracts of CD34+/CD38 cells. Phospho (p)-CREM was also present suggesting a balance between ICER and p-CREM in HSC. ICER seems to be responsible for decrease in G1 transition, based on reduced Cdk4 protein, decreased proliferation and functional studies with propidium iodide. There were no marked changes in the cycling inhibitors, p15 and p-Rb, suggesting that ICER may act independently of other cycling inhibitors. The major effects of ICER were validated with BM mononuclear cells (BMNCs) in which ICER was ectopically expressed, and with BMNCs resistant to 5-fluorouracil- or cyclophosphamide. In total, this study ascribes a novel role for ICER in G1 checkpoint regulation in HSCs. These findings are relevant to gene therapy that require engineering of HSCs, age-related disorders that are associated with hematopoietic dysfunction and other hematological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hao, S., Chen, C., & Cheng, T. (2016). Cell cycle regulation of hematopoietic stem or progenitor cells. International Journal of Hematology, 103, 487–497.

    Article  CAS  PubMed  Google Scholar 

  2. Klassert, T. E., Patel, S. A., & Rameshwar, P. (2010). Tachykinins and neurokinin receptors in bone marrow functions: neural-hematopoietic link. Journal of Receptor, Ligand Channel Res, 2010, 51–61.

    Google Scholar 

  3. Koide, S., Oshima, M., Takubo, K., Yamazaki, S., Nitta, E., Saraya, A., Aoyama, K., Kato, Y., Miyagi, S., Nakajima-Takagi, Y., et al. (2016). Setdb1 maintains hematopoietic stem and progenitor cells by restricting the ectopic activation of nonhematopoietic genes. Blood, 128, 638–649.

    Article  CAS  PubMed  Google Scholar 

  4. Omatsu, Y., & Nagasawa, T. (2015). The critical and specific transcriptional regulator of the microenvironmental niche for hematopoietic stem and progenitor cells. Current Opinion in Hematology, 22, 330–336.

    CAS  PubMed  Google Scholar 

  5. Sinclair, A., Park, L., Shah, M., Drotar, M., Calaminus, S., Hopcroft, L. E. M., Kinstrie, R., Guitart, A. V., Dunn, K., Abraham, S. A., et al. (2016). CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood, 128, 371–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jung, W.-C., Levesque, J.-P., & Ruitenberg, M. J. (2016). It takes nerve to fight back: the significance of neural innervation of the bone marrow and spleen for immune function. Seminars in Cell and Developmental Biology. doi:10.1016/j.semcdb.2016.08.010.

    PubMed  Google Scholar 

  7. Suzuki, Y., Takagi, R., Kawasaki, I., Matsudaira, T., Yanagisawa, H., & Shimizu, H. (2008). The micronucleus test and erythropoiesis: effects of cyclic adenosine monophosphate (cAMP) on micronucleus formation. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 655, 47–51.

    Article  CAS  Google Scholar 

  8. Corcoran, K. E., Malhotra, A., Molina, C. A., & Rameshwar, P. (2008). Stromal-derived factor-1alpha induces a non-canonical pathway to activate the endocrine-linked Tac1 gene in non-tumorigenic breast cells. Journal of Molecular Endocrinology, 40, 113–123.

    Article  CAS  PubMed  Google Scholar 

  9. Goichberg, P., Kalinkovich, A., Borodovsky, N., Tesio, M., Petit, I., Nagler, A., Hardan, I., & Lapidot, T. (2006). cAMP-induced PKCζ activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood, 107, 870–879.

    Article  CAS  PubMed  Google Scholar 

  10. Roesler, W. J. (2000). At the cutting edge what is a cAMP response unit? Molecular and Cellular Endocrinology, 162, 1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mitton, B., Cho, E.-C., Aldana-Masangkay, G. I., & Sakamoto, K. M. (2011). The function of cyclic-adenosine monophosphate responsive element-binding protein in hematologic malignancies. Leukemia & Lymphoma, 52, 2057–2063.

    Article  CAS  Google Scholar 

  12. Molina, C. A., Foulkes, N. S., Lalli, E., & Sassone-Corsi, P. (1993). Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell, 75, 875–886.

    Article  CAS  PubMed  Google Scholar 

  13. Yehia, G., Schlotter, F., Razavi, R., Alessandrini, A., & Molina, C. A. (2001). Mitogen-activated protein kinase phosphorylates and targets inducible cAMP early repressor to ubiquitin-mediated destruction. The Journal of Biological Chemistry, 276, 35272–35279.

    Article  CAS  PubMed  Google Scholar 

  14. Muñiz, L. C., & Molina, C. A. (2016). The transcriptional repressor ICER binds to multiple loci throughout the genome. Biochemical and Biophysical Research Communications, 478, 1462–1465.

    Article  PubMed  Google Scholar 

  15. Bodor, J., Bodorova, J., & Gress, R. E. (2000). Suppression of T cell function: a potential role for transcriptional repressor ICER. Journal of Leukocyte Biology, 67, 774–779.

    CAS  PubMed  Google Scholar 

  16. Muniz, L. C., Yehia, G., Memin, E., Ratnakar, P. V., & Molina, C. A. (2006). Transcriptional regulation of cyclin D2 by the PKA pathway and inducible cAMP early repressor in granulosa cells. Biology of Reproduction, 75, 279–288.

    Article  CAS  PubMed  Google Scholar 

  17. Mémin, E., Genzale, M., Crow, M., & Molina, C. A. (2011). Evidence that phosphorylation by the mitotic kinase Cdk1 promotes ICER monoubiquitination and nuclear delocalization. Experimental Cell Research, 317, 2490–2502.

    Article  PubMed  Google Scholar 

  18. Rameshwar, P., Zhu, G., Donnelly, R. J., Qian, J., Ge, H., Goldstein, K. R., Denny, T. N., & Gascón, P. (2001). The dynamics of bone marrow stromal cells in the proliferation of multipotent hematopoietic progenitors by substance P: an understanding of the effects of a neurotransmitter on the differentiating hematopoietic stem cell. Journal of Neuroimmunology, 121, 22–31.

    Article  CAS  PubMed  Google Scholar 

  19. Rameshwar, P., Gascon, P., Oh, H. S., Denny, T. N., Zhu, G., & Ganea, D. (2002). Vasoactive intestinal peptide (VIP) inhibits the proliferation of bone marrow progenitors through the VPAC1 receptor. Experimental Hematology, 30, 1001–1009.

    Article  CAS  PubMed  Google Scholar 

  20. Corcoran, K. E., Patel, N., & Rameshwar, P. (2007). Stromal derived growth factor-1α: another mediator in neural-emerging immune system through Tac1 expression in bone marrow stromal cells. Journal of Immunology, 178, 2075–2082.

    Article  CAS  Google Scholar 

  21. Ding, B. (2005). Abe J-i, Wei H, Xu H, Che W, Aizawa T, Liu W, Molina CA, Sadoshima J, Blaxall BC, et al.: a positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. Proceedings of the National Academy of Sciences, 102, 14771–14776.

    Article  CAS  Google Scholar 

  22. Patel, S. A., Ramkissoon, S. H., Bryan, M., Pliner, L. F., Dontu, G., Patel, P. S., Amiri, S., Pine, S. R., & Rameshwar, P. (2012). Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Scientific Reports, 2, 906.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steigedal, T. S., Bruland, T., Misund, K., Thommesen, L., & Lægreid, A. (2007). Inducible cAMP early repressor suppresses gastrin-mediated activation of cyclin D1 and c-fos gene expression. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292, G1062–G1069.

    Article  CAS  PubMed  Google Scholar 

  24. Peters, G. J. (2014). Novel developments in the use of antimetabolites. Nucleosides, Nucleotides & Nucleic Acids, 33, 358–374.

    Article  CAS  Google Scholar 

  25. Delghandi, M. P., Johannessen, M., & Moens, U. (2005). The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3 T3 cells. Cellular Signalling, 17, 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  26. Kandel, E. R. (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Molecular Brain, 5, 1–12.

    Article  Google Scholar 

  27. Patel, N., Klassert, T. E., Greco, S. J., Patel, S. A., Munoz, J. L., Reddy, B. Y., Bryan, M., Campbell, N., Kokorina, N., Sabaawy, H. E., & Rameshwar, P. (2011). Developmental regulation of TAC1 in Peptidergic-induced human mesenchymal stem cells: implication for spinal cord injury in zebrafish. Stem Cells and Development, 21, 308–320.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ortega, S., Malumbres, M., & Barbacid, M. (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochimica et Biophysica Acta (BBA) - Rev on Cancer, 1602, 73–87.

    Article  CAS  Google Scholar 

  29. Krimpenfort, P., Ijpenberg, A., Song, J.-Y., van der Valk, M., Nawijn, M., Zevenhoven, J., & Berns, A. (2007). p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature, 448, 943–946.

    Article  CAS  PubMed  Google Scholar 

  30. Giacinti, C., & Giordano, A. (2016). RB and cell cycle progression. Oncogene, 25, 5220–5227.

    Article  Google Scholar 

  31. Macleod, K. F., Sherry, N., Hannon, G., Beach, D., Tokino, T., Kinzler, K., Vogelstein, B., & Jacks, T. (1995). p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes & Development, 9, 935–944.

    Article  CAS  Google Scholar 

  32. Bartek, J., & Lukas, J. (2001). Mammalian G1- and S-phase checkpoints in response to DNA damage. Current Opinion in Cell Biology, 13, 738–747.

    Article  CAS  PubMed  Google Scholar 

  33. de Haan, G., Nijhof, W., & Van Zant, G. (1997). Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood, 89, 1543–1550.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, S.J., Yehia, G., Potian, J.A. et al. Constitutive Expression of Inducible Cyclic Adenosine Monophosphate Early Repressor (ICER) in Cycling Quiescent Hematopoietic Cells: Implications for Aging Hematopoietic Stem Cells. Stem Cell Rev and Rep 13, 116–126 (2017). https://doi.org/10.1007/s12015-016-9701-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9701-5

Keywords

Navigation