Skip to main content

Advertisement

Log in

Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stem cell fate is largely determined by the microenvironment called niche. The extracellular matrix (ECM), as a key component in the niche, is responsible for maintaining structural stability and regulating cell proliferation, differentiation, migration and other cellular activities. Each tissue has a unique ECM composition for its needs. Here we investigated the effect of a bioengineered human dermal fibroblast-derived ECM (hECM) on the regulation of human mesenchymal stem cell (hMSC) proliferation and multilineage differentiation. Human MSCs were maintained on hECM for two passages followed by the analysis of mRNA expression levels of potency- and lineage-specific markers to determine the capacity of MSC stemness and differentiation, respectively. Mesenchymal stem cells pre-cultured with or without hECM were then induced and analyzed for osteogenesis, adipogenesis and chondrogenesis. Our results showed that compared to MSCs maintained on control culture plates without hECM coating, cells on hECM-coated plates proliferated more rapidly with a higher percentage of cells in S phase of the cell cycle, resulting in an increase in the CD90+/CD105+/CD73+/CD45 subpopulation. In addition, hECM downregulated osteogenesis and adipogenesis of hMSCs but significantly upregulated chondrogenesis with increased production of collagen type 2. In sum, our findings suggest that hECM may be used to culture hMSCs for the application of cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Loeser, R. F. (2010). Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clinics in Geriatric Medicine, 26, 371–386.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Collins, J. (2013). Letter from the editor: effects of aging on the musculoskeletal system. Seminars in Roentgenology, 48, 105–106.

    Article  PubMed  Google Scholar 

  3. Musumeci, G., Szychlinska, M. A., & Mobasheri, A. (2015). Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: molecular markers of senescent chondrocytes. Histology and Histopathology, 30, 1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Ferrari, S. L. (2005). Osteoporosis: a complex disorder of aging with multiple genetic and environmental determinants. World Review of Nutrition and Dietetics, 95, 35–51.

    Article  CAS  PubMed  Google Scholar 

  5. Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology, 36, 568–584.

    Article  CAS  Google Scholar 

  6. Javazon, E. H., Beggs, K. J., & Flake, A. W. (2004). Mesenchymal stem cells: paradoxes of passaging. Experimental Hematology, 32, 414–425.

    Article  CAS  PubMed  Google Scholar 

  7. Hanson, S. E., Gutowski, K. A., & Hematti, P. (2010). Clinical applications of mesenchymal stem cells in soft tissue augmentation. Aesthetic Surgery Journal / the American Society for Aesthetic Plastic Surgery, 30, 838–842.

    Article  PubMed Central  Google Scholar 

  8. Kim, N., & Cho, S. G. (2013). Clinical applications of mesenchymal stem cells. The Korean Journal of Internal Medicine, 28, 387–402.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shekkeris, A. S., Jaiswal, P. K., & Khan, W. S. (2012). Clinical applications of mesenchymal stem cells in the treatment of fracture non-union and bone defects. Current Stem Cell Research & Therapy, 7, 127–133.

    Article  CAS  Google Scholar 

  10. Miura, Y. (2015). Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. International Journal of Hematology. doi:10.1007/s12185-015-1920-z.

    Google Scholar 

  11. Grigolo, B., Lisignoli, G., Desando, G., et al. (2009). Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Engineering. Part C, Methods, 15, 647–658.

    Article  CAS  PubMed  Google Scholar 

  12. Alfaqeh, H., Norhamdan, M. Y., Chua, K. H., Chen, H. C., Aminuddin, B. S., & Ruszymah, B. H. (2008). Cell based therapy for osteoarthritis in a sheep model: gross and histological assessment. The Medical Journal of Malaysia, 63 Suppl A, 37–38.

    CAS  PubMed  Google Scholar 

  13. Murphy, J. M., Fink, D. J., Hunziker, E. B., & Barry, F. P. (2003). Stem cell therapy in a caprine model of osteoarthritis. Arthritis and Rheumatism, 48, 3464–3474.

    Article  PubMed  Google Scholar 

  14. Grayson, W. L., Zhao, F., Bunnell, B., & Ma, T. (2007). Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 358, 948–953.

    Article  CAS  PubMed  Google Scholar 

  15. Palumbo, S., Tsai, T. L., & Li, W. J. (2014). Macrophage migration inhibitory factor regulates AKT signaling in hypoxic culture to modulate senescence of human mesenchymal stem cells. Stem Cells and Development, 23, 852–865.

    Article  CAS  PubMed  Google Scholar 

  16. Handorf, A. M., & Li, W. J. (2011). Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PloS One, 6, e22887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, J. Y., Zhou, Z., Taub, P. J., et al. (2011). BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PloS One, 6, e17531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiu, L. H., Yeh, T. S., Huang, H. M., Leu, S. J., Yang, C. B., & Tsai, Y. H. (2012). Diverse effects of type II collagen on osteogenic and adipogenic differentiation of mesenchymal stem cells. Journal of Cellular Physiology, 227, 2412–2420.

    Article  CAS  PubMed  Google Scholar 

  19. Rakian, R., Block, T. J., Johnson, S. M., et al. (2015). Native extracellular matrix preserves mesenchymal stem cell “stemness” and differentiation potential under serum-free culture conditions. Stem Cell Research & Therapy, 6, 235.

    Article  Google Scholar 

  20. Chen, X. D. (2010). Extracellular matrix provides an optimal niche for the maintenance and propagation of mesenchymal stem cells. Birth Defects Research. Part C, Embryo Today : Reviews, 90, 45–54.

    Article  CAS  Google Scholar 

  21. Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta, 1840, 2506–2519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watt, F. M., & Huck, W. T. (2013). Role of the extracellular matrix in regulating stem cell fate. Nature Reviews. Molecular Cell Biology, 14, 467–473.

    Article  CAS  PubMed  Google Scholar 

  23. Wei, Q., Pohl, T. L., Seckinger, A., Spatz, J. P., & Cavalcanti-Adam, E. A. (2015). Regulation of integrin and growth factor signaling in biomaterials for osteodifferentiation. Beilstein Journal of Organic Chemistry, 11, 773–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Somers, P., Cornelissen, R., Thierens, H., & Van Nooten, G. (2012). An optimized growth factor cocktail for ovine mesenchymal stem cells. Growth Factors, 30, 37–48.

    Article  CAS  PubMed  Google Scholar 

  25. Peng, T., Zhu, G., Dong, Y., et al. (2015). BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells. Clinical Laboratory, 61, 1171–1178.

    CAS  PubMed  Google Scholar 

  26. Hughes, C. S., Postovit, L. M., & Lajoie, G. A. (2010). Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 10, 1886–1890.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, Y. L., Sun, Y. P., Zhang, H., et al. (2015). Mesenchymal stem cells obtained from synovial fluid mesenchymal stem cell-derived induced pluripotent stem cells on a Matrigel coating exhibited enhanced proliferation and differentiation potential. PloS One, 10, e0144226.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Uemura, M., Refaat, M. M., Shinoyama, M., Hayashi, H., Hashimoto, N., & Takahashi, J. (2010). Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. Journal of Neuroscience Research, 88, 542–551.

    CAS  PubMed  Google Scholar 

  29. Ng, C. P., Sharif, A. R., Heath, D. E., et al. (2014). Enhanced ex vivo expansion of adult mesenchymal stem cells by fetal mesenchymal stem cell ECM. Biomaterials, 35, 4046–4057.

    Article  CAS  PubMed  Google Scholar 

  30. He, H., Liu, X., Peng, L., et al. (2013). Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. BioMed Research International, 2013, 406871.

    PubMed  PubMed Central  Google Scholar 

  31. Nejadnik, H., Hui, J. H., Feng Choong, E. P., Tai, B. C., & Lee, E. H. (2010). Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. The American Journal of Sports Medicine, 38, 1110–1116.

    Article  PubMed  Google Scholar 

  32. Kruse, P. F. Jr, & Patterson, M. K. Jr (Eds) (1973). Tissue culture methods and applications. New York: Academic Press.

  33. Administration UFaD. (1993). Points to consider in the characterization of cell line used to produce biologicals. Bethesda: US Department of Health and Human Services.

    Google Scholar 

  34. Pinney, E., Zimber, M., Schenone, A., Montes-Camacho, M., Ziegler, F., & Naughton, G. K. (2011). Human Embryonic-like ECM (hECM) stimulates proliferation and differentiation in stem cells while killing cancer cells. International Journal of Stem Cells, 4, 70–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neuman, R. E., & Logan, M. A. (1950). The determination of collagen and elastin in tissues. The Journal of Biological Chemistry, 186, 549–556.

    CAS  PubMed  Google Scholar 

  36. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  37. Kwon, S. H., Lee, T. J., Park, J., et al. (2013). Modulation of BMP-2-induced chondrogenic versus osteogenic differentiation of human mesenchymal stem cells by cell-specific extracellular matrices. Tissue Engineering Part A, 19, 49–58.

    Article  CAS  PubMed  Google Scholar 

  38. Rao Pattabhi, S., Martinez, J. S., & Keller, T. C., 3rd. (2014). Decellularized ECM effects on human mesenchymal stem cell stemness and differentiation. Differentiation; Research in Biological Diversity, 88, 131–143.

    Article  CAS  PubMed  Google Scholar 

  39. Anisimov, S. V., Christophersen, N. S., Correia, A. S., et al. (2011). Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells. Cellular & Molecular Biology Letters, 16, 79–88.

    Article  CAS  Google Scholar 

  40. Park, Y., Kim, J. H., Lee, S. J., et al. (2011). Human feeder cells can support the undifferentiated growth of human and mouse embryonic stem cells using their own basic fibroblast growth factors. Stem Cells and Development, 20, 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  41. Unger, C., Gao, S., Cohen, M., et al. (2009). Immortalized human skin fibroblast feeder cells support growth and maintenance of both human embryonic and induced pluripotent stem cells. Human Reproduction, 24, 2567–2581.

    Article  CAS  PubMed  Google Scholar 

  42. Meng, G., Liu, S., Li, X., Krawetz, R., & Rancourt, D. E. (2010). Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells and Development, 19, 547–556.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, J., Liao, L., & Tan, J. (2011). Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions. Expert Opinion on Biological Therapy, 11, 893–909.

    Article  PubMed  Google Scholar 

  44. Phinney, D. G. (2012). Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. Journal of Cellular Biochemistry, 113, 2806–2812.

    Article  CAS  PubMed  Google Scholar 

  45. Kawamoto, K., Konno, M., Nagano, H., et al. (2013). CD90- (Thy-1-) high selection enhances reprogramming capacity of murine adipose-derived mesenchymal stem cells. Disease Markers, 35, 573–579.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Qi, J., Chen, A., You, H., Li, K., Zhang, D., & Guo, F. (2011). Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds. Biomedical Materials, 6, 015006.

    Article  PubMed  Google Scholar 

  47. Eyre, D. (2002). Collagen of articular cartilage. Arthritis Research, 4, 30–35.

    Article  CAS  PubMed  Google Scholar 

  48. Sophia Fox, A. J., Bedi, A., & Rodeo, S. A. (2009). The basic science of articular cartilage: structure, composition, and function. Sports Health, 1, 461–468.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Eerola, I., Salminen, H., Lammi, P., et al. (1998). Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis and Rheumatism, 41, 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  50. Lu, H., Hoshiba, T., Kawazoe, N., Koda, I., Song, M., & Chen, G. (2011). Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials, 32, 9658–9666.

    Article  CAS  PubMed  Google Scholar 

  51. von der Mark, K., Kirsch, T., Nerlich, A., et al. (1992). Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis and Rheumatism, 35, 806–811.

    Article  PubMed  Google Scholar 

  52. Cheung, J. O., Grant, M. E., Jones, C. J., Hoyland, J. A., Freemont, A. J., & Hillarby, M. C. (2003). Apoptosis of terminal hypertrophic chondrocytes in an in vitro model of endochondral ossification. The Journal of Pathology, 201, 496–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Matthew Squire for his assistance in providing human femoral heads for MSC isolation. We would also like to thank PUR Biologics for providing funding to support this study. Lastly, we want to thank the University of Wisconsin Carbone Cancer Center supported by the grant P30 CA014520 for the use of its flow cytometry facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Ju Li.

Ethics declarations

Conflict of Interest

This study was sponsored by PUR Biologics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Comparison between effects of hECM and fibronectin on regulation of hMSC numbers in culture. Numbers of hMSCs cultured with or without fibronectin or hECM were determined by quantifying total DNA content. (GIF 22 kb)

High Resolution (TIF 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zimber, M., Yuan, H. et al. Effects of Human Fibroblast-Derived Extracellular Matrix on Mesenchymal Stem Cells. Stem Cell Rev and Rep 12, 560–572 (2016). https://doi.org/10.1007/s12015-016-9671-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9671-7

Keywords

Navigation