Stem Cell Reviews and Reports

, Volume 12, Issue 2, pp 189–201 | Cite as

Mechanical Actuation Systems for the Phenotype Commitment of Stem Cell-Based Tendon and Ligament Tissue Substitutes

  • Marco Govoni
  • Claudio Muscari
  • Joseph Lovecchio
  • Carlo Guarnieri
  • Emanuele Giordano


High tensile forces transmitted by tendons and ligaments make them susceptible to tearing or complete rupture. The present standard reparative technique is the surgical implantation of auto- or allografts, which often undergo failure.

Currently, different cell types and biomaterials are used to design tissue engineered substitutes. Mechanical stimulation driven by dedicated devices can precondition these constructs to a remarkable degree, mimicking the local in vivo environment. A large number of dynamic culture instruments have been developed and many appealing results collected. Of the cells that have been used, tendon stem cells are the most promising for a reliable stretch-induced tenogenesis, but their reduced availability represents a serious limitation to upscaled production. Biomaterials used for scaffold fabrication include both biological molecules and synthetic polymers, the latter being improved by nanotechnologies which reproduce the architecture of native tendons. In addition to cell type and scaffold material, other variables which must be defined in mechanostimulation protocols are the amplitude, frequency, duration and direction of the applied strain. The ideal conditions seem to be those producing intermittent tension rather than continuous loading. In any case, all physical parameters must be adapted to the specific response of the cells used and the tensile properties of the scaffold. Tendon/ligament grafts in animals usually have the advantage of mechanical preconditioning, especially when uniaxial cyclic forces are applied to cells engineered into natural or decellularized scaffolds. However, due to the scarcity of in vivo research, standard protocols still need to be defined for clinical applications.


Ligament Mechanical actuation systems Regenerative medicine Stem cells Tendon Tissue engineering 



This work has been supported by a Regione Emilia Romagna grant: POR-FESR 2007-2011.

Compliance with Ethical Standards

Conflict of Interest

The authors indicate no potential conflicts of interest.


  1. 1.
    Amiel, D., Frank, C., Harwood, F., Fronek, J., & Akeson, W. (1984). Tendons and ligaments: a morphological and biochemical comparison. Journal of Orthopaedic Research, 1(3), 257–265.CrossRefPubMedGoogle Scholar
  2. 2.
    Robi, K., Jakob, N., Matevz, K., Matjaz, V. (2013). The physiology of sports injuries and repair processes. In M. Hamlin (Ed.), Current issues in sports and exercise medicine (pp. 43–86). Rijeka, Croatia: InTech. doi: 10.5772/54234.
  3. 3.
    Morita, Y., Mukai, T., Ju, Y., & Watanabe, S. (2013). Evaluation of stem cell-to-tenocyte differentiation by atomic force microscopy to measure cellular elastic moduli. Cell Biochemistry and Biophysics, 66(1), 73–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Uysal, C. A., Tobita, M., Hyakusoku, H., & Mizuno, H. (2012). Adipose-derived stem cells enhance primary tendon repair: biomechanical and immunohistochemical evaluation. Journal of Plastic, Reconstructive & Aesthetic Surgery, 65(12), 1712–1719.CrossRefGoogle Scholar
  5. 5.
    Thomopoulos, S., Parks, W. C., Rifkin, D. B., & Derwin, K. A. (2015). Mechanisms of tendon injury and repair. Journal of Orthopaedic Research, 33(6), 832–839.CrossRefPubMedGoogle Scholar
  6. 6.
    Turner, N. J., & Badylak, S. F. (2013). Biologic scaffolds for musculotendinous tissue repair. European Cells & Materials, 25, 130–143.Google Scholar
  7. 7.
    Wilkins, R., & Bisson, L. J. (2012). Operative versus nonoperative management of acute Achilles tendon ruptures: a quantitative systematic review of randomized controlled trials. The American Journal of Sports Medicine, 40(9), 2154–2160.CrossRefPubMedGoogle Scholar
  8. 8.
    Bagnaninchi, P. O., Yang, Y., El Haj, A. J., Maffulli, N. (2007). Tissue engineering for tendon repair. British Journal of Sports Medicine, 41(8), e10; discussion e10.Google Scholar
  9. 9.
    Docheva, D., Muller, S. A., Majewski, M., & Evans, C. H. (2015). Biologics for tendon repair. Advanced Drug Delivery Reviews, 84, 222–239.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schneider, P. R., Buhrmann, C., Mobasheri, A., Matis, U., & Shakibaei, M. (2011). Three-dimensional high-density co-culture with primary tenocytes induces tenogenic differentiation in mesenchymal stem cells. Journal of Orthopaedic Research, 29(9), 1351–1360.CrossRefPubMedGoogle Scholar
  11. 11.
    Butler, D. L., Juncosa-Melvin, N., Boivin, G. P., et al. (2008). Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation. Journal of Orthopaedic Research, 26(1), 1–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen, J. L., Zhang, W., Liu, Z. Y., Heng, B. C., Ouyang, H. W., & Dai, X. S. (2015). Physical regulation of stem cells differentiation into teno-lineage: current strategies and future direction. Cell and Tissue Research, 360(2), 195–207.CrossRefPubMedGoogle Scholar
  13. 13.
    English, A., Azeem, A., Spanoudes, K., et al. (2015). Substrate topography: A valuable in vitro tool, but a clinical red herring for in vivo tenogenesis. Acta Biomaterialia, 27, 3–12.CrossRefPubMedGoogle Scholar
  14. 14.
    Ratcliffe, A., Butler, D. L., Dyment, N. A., et al. (2015). Scaffolds for tendon and ligament repair and regeneration. Annals of Biomedical Engineering, 43(3), 819–831.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Benhardt, H. A., & Cosgriff-Hernandez, E. M. (2009). The role of mechanical loading in ligament tissue engineering. Tissue Engineering. Part B, Reviews,, 15(4), 467–475.CrossRefGoogle Scholar
  16. 16.
    Lavagnino, M., Wall, M. E., Little, D., Banes, A. J., Guilak, F., & Arnoczky, S. P. (2015). Tendon mechanobiology: Current knowledge and future research opportunities. Journal of Orthopaedic Research, 33(6), 813–822.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Plunkett, N., & O'Brien, F. J. (2011). Bioreactors in tissue engineering. Technology and Health Care, 19(1), 55–69.PubMedGoogle Scholar
  18. 18.
    Martin, I., Wendt, D., & Heberer, M. (2004). The role of bioreactors in tissue engineering. Trends in Biotechnology, 22(2), 80–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Gaspar, D., Spanoudes, K., Holladay, C., Pandit, A., & Zeugolis, D. (2015). Progress in cell-based therapies for tendon repair. Advanced Drug Delivery Reviews, 84, 240–256.CrossRefPubMedGoogle Scholar
  20. 20.
    Mazzocca, A. D., Chowaniec, D., McCarthy, M., et al. (2012). In vitro changes in human tenocyte cultures obtained from proximal biceps tendon: multiple passages result in changes in routine cell markers. Knee Surgery, Sports Traumatology, Arthroscopy, 20(9), 1666–1672.CrossRefPubMedGoogle Scholar
  21. 21.
    Tang, Q. M., Chen, J. L., Shen, W. L., et al. (2014). Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration. Scientific Reports, 4, 5515.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu, W., Chen, B., Deng, D., Xu, F., Cui, L., & Cao, Y. (2006). Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Engineering, 12(4), 775–788.CrossRefPubMedGoogle Scholar
  23. 23.
    Ahmad, Z., Wardale, J., Brooks, R., Henson, F., Noorani, A., & Rushton, N. (2012). Exploring the application of stem cells in tendon repair and regeneration. Arthroscopy, 28(7), 1018–1029.CrossRefPubMedGoogle Scholar
  24. 24.
    Al-Nbaheen, M., Vishnubalaji, R., Ali, D., et al. (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Reviews, 9(1), 32–43.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Birmingham, E., Niebur, G. L., McHugh, P. E., Shaw, G., Barry, F. P., & McNamara, L. M. (2012). Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. European Cells & Materials, 23, 13–27.Google Scholar
  26. 26.
    Pelttari, K., Steck, E., & Richter, W. (2008). The use of mesenchymal stem cells for chondrogenesis. Injury. International Journal of the Care of the Injured, 39(Suppl 1), S58–S65.CrossRefPubMedGoogle Scholar
  27. 27.
    Muscari, C., Giordano, E., Bonafe, F., Govoni, M., & Guarnieri, C. (2014). Strategies affording prevascularized cell-based constructs for myocardial tissue engineering. Stem Cells International, 2014, 434169.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hao, J., Zhang, Y., Jing, D., et al. (2015). Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomaterialia, 20, 1–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Delaine-Smith, R. M., & Reilly, G. C. (2012). Mesenchymal stem cell responses to mechanical stimuli. Muscles, Ligaments and Tendons Journal, 2(3), 169–180.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ramdass, B., & Koka, S. (2015). Ligament and tendon repair through regeneration using mesenchymal stem cells. Current Stem Cell Research & Therapy, 10(1), 84–88.CrossRefGoogle Scholar
  31. 31.
    Yin, Z., Chen, X., Chen, J. L., & Ouyang, H. W. (2010). Stem cells for tendon tissue engineering and regeneration. Expert Opinion on Biological Therapy, 10(5), 689–700.CrossRefPubMedGoogle Scholar
  32. 32.
    Mazzocca, A. D., McCarthy, M. B. R., Chowaniec, D., et al. (2011). Bone marrow–derived mesenchymal stem cells obtained during arthroscopic rotator cuff repair surgery show potential for tendon cell differentiation after treatment with insulin. Arthroscopy, 27(11), 1459–1471.CrossRefPubMedGoogle Scholar
  33. 33.
    Tapp, H., Hanley Jr., E. N., Patt, J. C., & Gruber, H. E. (2009). Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Experimental Biology and Medicine, 234(1), 1–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Ronzière, M. C., Perrier, E., Mallein-Gerin, F., & Freyria, A. M. (2010). Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Bio-Medical Materials and Engineering, 20(3), 145–158.PubMedGoogle Scholar
  35. 35.
    Adesida, A. B., Mulet-Sierra, A., & Jomha, N. M. (2012). Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Research & Therapy, 3(2), 9.CrossRefGoogle Scholar
  36. 36.
    Estes, B. T., Diekman, B. O., Gimble, J. M., & Guilak, F. (2010). Isolation of adipose derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 5(7), 1294–1311.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lui, P. P., & Chan, K. M. (2011). Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Reviews, 7(4), 883–897.CrossRefPubMedGoogle Scholar
  38. 38.
    Bi, Y., Ehirchiou, D., Kilts, T. M., et al. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 13(10), 1219–1227.CrossRefPubMedGoogle Scholar
  39. 39.
    Tan, Q., Lui, P. P., Rui, Y. F., & Wong, Y. M. (2012a). Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Engineering. Part A,, 18(7–8), 840–851.CrossRefGoogle Scholar
  40. 40.
    Tan, Q., Lui, P. P., & Rui, Y. F. (2012b). Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells and Development, 21(5), 790–800.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang, C., Yuan, H., Liu, H., et al. (2015). Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials, 53, 716–730.CrossRefPubMedGoogle Scholar
  42. 42.
    Xu, W., Wang, Y., Liu, E., et al. (2013). Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Engineering. Part A,, 19(21–22), 2439–2451.CrossRefGoogle Scholar
  43. 43.
    Kuo, C. K., Marturano, J. E., & Tuan, R. S. (2010). Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology, 2, 20.CrossRefGoogle Scholar
  44. 44.
    Woo, S.-Y. (2009). Tissue engineering: use of scaffolds for ligament and tendon healing and regeneration. Knee Surgery, Sports Traumatology, Arthroscopy, 17(6), 559–560.CrossRefPubMedGoogle Scholar
  45. 45.
    Bosworth, L. A., Alam, N., Wong, J. K., & Downes, S. (2013). Investigation of 2D and 3D electrospun scaffolds intended for tendon repair. Journal of Materials Science. Materials in Medicine, 24(6), 1605–1614.CrossRefPubMedGoogle Scholar
  46. 46.
    Ouyang, H. W., Goh, J. C. H., Mo, X. M., Teoh, S. H., & Lee, E. H. (2002). Characterization of anterior cruciate ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Materials Science & Engineering. C, Materials for Biological Applications, 20(1–2), 63–69.CrossRefGoogle Scholar
  47. 47.
    Kew, S. J., Gwynne, J. H., Enea, D., et al. (2011). Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomaterialia, 7(9), 3237–3247.CrossRefPubMedGoogle Scholar
  48. 48.
    Juncosa-Melvin, N., Boivin, G. P., Galloway, M. T., Gooch, C., West, J. R., & Butler, D. L. (2006a). Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair. Tissue Engineering, 12(4), 681–689.CrossRefPubMedGoogle Scholar
  49. 49.
    Liu, Y., Ramanath, H. S., & Wang, D. A. (2008). Tendon tissue engineering using scaffold enhancing strategies. Trends in Biotechnology, 26(4), 201–209.CrossRefPubMedGoogle Scholar
  50. 50.
    Kwon, S.-Y., Chung, J.-W., Park, H.-J., Jiang, Y.-Y., Park, J.-K., & Seo, Y.-K. (2014). Silk and collagen scaffolds for tendon reconstruction. Proceedings of the Institution of Mechanical Engineers, Part H, Journal of Engineering in Medicine, 228(4), 388–396.CrossRefGoogle Scholar
  51. 51.
    Farè, S., Torricelli, P., Giavaresi, G., et al. (2013). In vitro study on silk fibroin textile structure for anterior cruciate ligament regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 33(7), 3601–3608.CrossRefGoogle Scholar
  52. 52.
    Altman, G. H., Diaz, F., Jakuba, C., et al. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401–416.CrossRefPubMedGoogle Scholar
  53. 53.
    Kishore, V., Bullock, W., Sun, X., Van Dyke, W. S., & Akkus, O. (2012). Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads. Biomaterials, 33(7), 2137–2144.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kurpinski, K., Chu, J., Hashi, C., & Li, S. (2006). Anisotropic mechanosensing by mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16095–16100.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Subramony, S. D., Dargis, B. R., Castillo, M., et al. (2013). The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials, 34(8), 1942–1953.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang, J. H., Guo, Q., & Li, B. (2012). Tendon biomechanics and mechanobiology–a minireview of basic concepts and recent advancements. Journal of Hand Therapy, 25(2), 133–141.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Altman, G. H., Lu, H. H., Horan, R. L., et al. (2002). Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. Journal of Biomechanical Engineering, 124(6), 742–749.CrossRefPubMedGoogle Scholar
  58. 58.
    Yates, E. W., Rupani, A., Foley, G. T., Khan, W. S., Cartmell, S., & Anand, S. J. (2012). Ligament tissue engineering and its potential role in anterior cruciate ligament reconstruction. Stem Cells International, 2012, 438125.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang, T., Gardiner, B. S., Lin, Z., et al. (2013). Bioreactor design for tendon/ligament engineering. Tissue Engineering. Part B, Reviews,, 19(2), 133–146.CrossRefGoogle Scholar
  60. 60.
    Riehl, B. D., Park, J. H., Kwon, I. K., & Lim, J. Y. (2012). Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Engineering. Part B, Reviews,, 18(4), 288–300.CrossRefGoogle Scholar
  61. 61.
    Rauh, J., Milan, F., Gunther, K. P., & Stiehler, M. (2011). Bioreactor systems for bone tissue engineering. Tissue Engineering. Part B, Reviews,, 17(4), 263–280.CrossRefGoogle Scholar
  62. 62.
    Govoni, M., Muscari, C., Guarnieri, C., & Giordano, E. (2013). Mechanostimulation protocols for cardiac tissue engineering. BioMed Research International, 2013, 918640.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Govoni, M., Lotti, F., Biagiotti, L., et al. (2014). An innovative stand-alone bioreactor for the highly reproducible transfer of cyclic mechanical stretch to stem cells cultured in a 3D scaffold. Journal of Tissue Engineering and Regenerative Medicine, 8(10), 787–793.CrossRefPubMedGoogle Scholar
  64. 64.
    Candiani, G., Riboldi, S. A., Sadr, N., et al. (2010). Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. Journal of Applied Biomaterials & Biomechanics, 8(2), 68–75.Google Scholar
  65. 65.
    Riboh, J., Chong, A. K., Pham, H., Longaker, M., Jacobs, C., & Chang, J. (2008). Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. The Journal of Hand Surgery, 33(8), 1388–1396.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang, J., & Wang, J. H. (2010). Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. Journal of Orthopaedic Research, 28(5), 639–643.PubMedGoogle Scholar
  67. 67.
    Angelidis, I. K., Thorfinn, J., Connolly, I. D., Lindsey, D., Pham, H. M., & Chang, J. (2010). Tissue engineering of flexor tendons: the effect of a tissue bioreactor on adipoderived stem cell-seeded and fibroblast-seeded tendon constructs. The Journal of Hand Surgery, 35(9), 1466–1472.CrossRefPubMedGoogle Scholar
  68. 68.
    Barber, J. G., Handorf, A. M., Allee, T. J., & Li, W. J. (2013). Braided nanofibrous scaffold for tendon and ligament tissue engineering. Tissue Engineering. Part A,, 19(11–12), 1265–1274.CrossRefGoogle Scholar
  69. 69.
    Scott, A., Danielson, P., Abraham, T., Fong, G., Sampaio, A. V., & Underhill, T. M. (2011). Mechanical force modulates scleraxis expression in bioartificial tendons. Journal of Musculoskeletal & Neuronal Interactions, 11(2), 124–132.Google Scholar
  70. 70.
    Morita, Y., Watanabe, S., Ju, Y., & Xu, B. (2013b). Determination of optimal cyclic uniaxial stretches for stem cell-to-tenocyte differentiation under a wide range of mechanical stretch conditions by evaluating gene expression and protein synthesis levels. Acta of Bioengineering and Biomechanics, 15(3), 71–79.PubMedGoogle Scholar
  71. 71.
    Teh, T. K., Toh, S. L., & Goh, J. C. (2013). Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells. Tissue Engineering. Part A,, 19(11–12), 1360–1372.CrossRefGoogle Scholar
  72. 72.
    Youngstrom, D. W., Rajpar, I., Kaplan, D. L., & Barrett, J. G. (2015). A bioreactor system for in vitro tendon differentiation and tendon tissue engineering. Journal of Orthopaedic Research, 33(6), 911–918.CrossRefPubMedGoogle Scholar
  73. 73.
    Zhang, L., Tran, N., Chen, H. Q., et al. (2008). Time-related changes in expression of collagen types I and III and of tenascin-C in rat bone mesenchymal stem cells under co-culture with ligament fibroblasts or uniaxial stretching. Cell and Tissue Research, 332(1), 101–109.CrossRefPubMedGoogle Scholar
  74. 74.
    Kreja, L., Liedert, A., Schlenker, H., et al. (2012). Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. Journal of Materials Science. Materials in Medicine, 23(10), 2575–2582.CrossRefPubMedGoogle Scholar
  75. 75.
    Kahn, C. J., Ziani, K., Zhang, Y. M., et al. (2013). Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions. Journal of biomaterials science. Polymer Edition, 24(8), 899–911.PubMedGoogle Scholar
  76. 76.
    Li, X., & Snedeker, J. G. (2013). Wired silk architectures provide a biomimetic ACL tissue engineering scaffold. Journal of the Mechanical Behavior of Biomedical Materials, 22, 30–40.CrossRefPubMedGoogle Scholar
  77. 77.
    Laurencin, C. T., & Freeman, J. W. (2005). Ligament tissue engineering: an evolutionary materials science approach. Biomaterials, 26(36), 7530–7536.CrossRefPubMedGoogle Scholar
  78. 78.
    Qiu, Y., Lei, J., Koob, T. J., & Temenoff, J. S. (2014). Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. Journal of Tissue Engineering and Regenerative Medicine. doi: 10.1002/term.1880.Google Scholar
  79. 79.
    Dhinsa, B. S., Mahapatra, A. N., & Khan, W. S. (2014). Sources of adult mesenchymal stem cells for ligament and tendon tissue engineering. Current Stem Cell Research & Therapy, 10(1), 26–30.CrossRefGoogle Scholar
  80. 80.
    Chen, X., Yin, Z., Chen, J. L., et al. (2014). Scleraxis-overexpressed human embryonic stem cell-derived mesenchymal stem cells for tendon tissue engineering with knitted silk-collagen scaffold. Tissue Engineering. Part A, 20(11–12), 1583–1592.CrossRefPubMedGoogle Scholar
  81. 81.
    Shearn, J. T., Kinneberg, K. R., Dyment, N. A., et al. (2011). Tendon tissue engineering: progress, challenges, and translation to the clinic. Journal of Musculoskeletal & Neuronal Interactions, 11(2), 163–173.Google Scholar
  82. 82.
    Rodrigues, M. T., Reis, R. L., & Gomes, M. E. (2013). Engineering tendon and ligament tissues: present developments towards successful clinical products. Journal of Tissue Engineering and Regenerative Medicine, 7(9), 673–686.CrossRefPubMedGoogle Scholar
  83. 83.
    Enea, D., Gwynne, J., Kew, S., et al. (2013). Collagen fibre implant for tendon and ligament biological augmentation. In vivo study in an ovine model. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1783–1793.CrossRefPubMedGoogle Scholar
  84. 84.
    Fan, H., Liu, H., Toh, S. L., & Goh, J. C. H. (2009). Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials, 30(28), 4967–4977.CrossRefPubMedGoogle Scholar
  85. 85.
    Nishimoto, H., Kokubu, T., Inui, A., et al. (2012). Ligament regeneration using an absorbable stent-shaped poly-l-lactic acid scaffold in a rabbit model. International Orthopaedics, 36(11), 2379–2386.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lee, J. Y., Zhou, Z., Taub, P. J., et al. (2011). BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PloS One, 6(3), e17531.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Juncosa-Melvin, N., Shearn, J. T., Boivin, G. P., et al. (2006b). Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Engineering, 12(8), 2291–2300.CrossRefPubMedGoogle Scholar
  88. 88.
    Nirmalanandhan, V. S., Juncosa-Melvin, N., Shearn, J. T., et al. (2009). Combined effects of scaffold stiffening and mechanical preconditioning cycles on construct biomechanics, gene expression, and tendon repair biomechanics. Tissue Engineering. Part A, 15(8), 2103–2111.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Thorfinn, J., Angelidis, I. K., Gigliello, L., Pham, H. M., Lindsey, D., & Chang, J. (2012). Bioreactor optimization of tissue engineered rabbit flexor tendons in vivo. The Journal of Hand Surgery, European Volume.,, 37(2), 109–114.CrossRefGoogle Scholar
  90. 90.
    Xu, Y., Dong, S., Zhou, Q., et al. (2014). The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials, 35(9), 2760–2772.CrossRefPubMedGoogle Scholar
  91. 91.
    Wang, B., Liu, W., Zhang, Y., et al. (2008). Engineering of extensor tendon complex by an ex vivo approach. Biomaterials, 29(20), 2954–2961.CrossRefPubMedGoogle Scholar
  92. 92.
    Deng, D., Wang, W., Wang, B., et al. (2014). Repair of Achilles tendon defect with autologous ASCs engineered tendon in a rabbit model. Biomaterials, 35(31), 8801–8809.CrossRefPubMedGoogle Scholar
  93. 93.
    Breidenbach, A. P., Gilday, S. D., Lalley, A. L., et al. (2014). Functional tissue engineering of tendon: establishing biological success criteria for improving tendon repair. Journal of Biomechanics, 47(9), 1941–1948.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Huang, T. F., Yew, T. L., Chiang, E. R., et al. (2013). Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair. The American Journal of Sports Medicine, 41(5), 1117–1125.CrossRefPubMedGoogle Scholar
  95. 95.
    Canseco, J. A., Kojima, K., Penvose, A. R., et al. (2012). Effect on ligament marker expression by direct-contact co-culture of mesenchymal stem cells and anterior cruciate ligament cells. Tissue Engineering. Part A, 18(23–24), 2549–2558.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Mosher, C. Z., Spalazzi, J. P., & Lu, H. H. (2015). Stratified scaffold design for engineering composite tissues. Methods, 84, 99–102.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marco Govoni
    • 1
    • 4
  • Claudio Muscari
    • 1
    • 2
  • Joseph Lovecchio
    • 3
  • Carlo Guarnieri
    • 1
    • 2
  • Emanuele Giordano
    • 1
    • 3
  1. 1.BioEngLab, Health Science and Technology – Interdepartmental Center for Industrial Research (HST-CIRI)University of BolognaOzzano EmiliaItaly
  2. 2.Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
  3. 3.Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti” - Department of Electrical, Electronic and Information Engineering (DEI)University of BolognaCesenaItaly
  4. 4.Prometeo Laboratory - Department of Research, Innovation and Technology (RIT)The Rizzoli Orthopedic InstituteBolognaItaly

Personalised recommendations