Stem Cell Reviews and Reports

, Volume 12, Issue 2, pp 163–170 | Cite as

Erase and Rewind: Epigenetic Conversion of Cell Fate

  • Georgia Pennarossa
  • Alessandro Zenobi
  • Cecilia E. Gandolfi
  • Elena F. M. Manzoni
  • Fulvio Gandolfi
  • Tiziana A. L. BreviniEmail author


The potential of cell therapy in regenerative medicine has greatly expanded thanks to the availability of sources of pluripotent cells. In particular, induced pluripotent stem cells (iPS) have dominated the scenario in the last years for their ability to proliferate and differentiate into specific cell types. Nevertheless, the concerns inherent to the cell reprogramming process, limit iPS use in therapy and pose questions on the long-term behavior of these cells. In particular, despite the development of virus-free methods for their obtainment, a major and persisting drawback, is related to the acquisition of a stable pluripotent state, that is un-physiological and may lead to cell instability. The increased understanding of epigenetic mechanisms has paved the way to the use of “small molecules” and “epigenetic modifiers” that allow the fine tuning of cell genotype and phenotype. In particular, it was demonstrated that an adult mature cell could be directly converted into a different cell type with the use of these chemicals, obtaining a new patient-specific cell, suitable for cell therapy. This approach is simple and direct and may represent a very promising tool for the regenerative medicine of several and diverse degenerative diseases.


Cell conversion Epigenetic memory Regenerative medicine Reprogramming Trans-differentiation 



The authors’ research was funded by Carraresi Foundation and European Foundation for the Study of Diabetes (EFSD). GP is supported by a post-doc fellowship of the University of Milan. Authors are members of the COST Action FA1201 Epiconcept: Epigenetics and Periconception environment and the COST Action BM1308 Sharing advances on large animal models (SALAAM). TALB is member of the COST Action CM1406 Epigenetic Chemical Biology (EPICHEMBio).

Compliance with Ethical Standards


The authors indicate no potential conflicts of interest.


  1. 1.
    Swain, P. S., Elowitz, M. B., & Siggia, E. D. (2002). Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12795–12800.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hemberger, M., Dean, W., & Reik, W. (2009). Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nature Reviews. Molecular Cell Biology, 10(8), 526–537.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou, Q., & Melton, D. A. (2008). Extreme makeover: converting one cell into another. Cell Stem Cell, 3, 382–388.CrossRefPubMedGoogle Scholar
  4. 4.
    Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell, 128(4), 635–638.CrossRefPubMedGoogle Scholar
  5. 5.
    Xie, R., Everett, L. J., Lim, H. W., et al. (2013). Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell, 12(2), 224–237.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhu, J., Adli, M., Zou, J. Y., et al. (2013). Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell, 152(3), 642–654.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jost, D. (2014). Bifurcation in epigenetics: implications in development, proliferation, and diseases. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 89(1), 010701.CrossRefPubMedGoogle Scholar
  8. 8.
    Shipony, Z., Mukamel, Z., Cohen, N. M., et al. (2014). Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature, 513(7516), 115–119.CrossRefPubMedGoogle Scholar
  9. 9.
    Brevini, T. A., Pennarossa, G., Maffei, S., & Gandolfi, F. (2015). Phenotype switching through epigenetic conversion. Reproduction, Fertility, and Development, 27(5), 776–783.CrossRefGoogle Scholar
  10. 10.
    Choy, M. K., Movassagh, M., Goh, H. G., Bennett, M. R., Down, T. A., & Foo, R. S. (2010). Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics, 11, 519.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Spivakov, M., & Fisher, A. G. (2007). Epigenetic signatures of stem-cell identity. Nature Reviews. Genetics, 8(4), 263–271.CrossRefPubMedGoogle Scholar
  12. 12.
    De Carvalho, D. D., You, J. S., & Jones, P. A. (2010). DNA methylation and cellular reprogramming. Trends in Cell Biology, 20(10), 609–617.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gurdon, J. B., Elsdale, T. R., & Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 182(4627), 64–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Gurdon, J. B. (1960). The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. Journal of Embryology and Experimental Morphology, 8, 505–526.PubMedGoogle Scholar
  15. 15.
    Miller, R. A., & Ruddle, F. H. (1976). Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell, 9(1), 45–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51(6), 987–1000.CrossRefPubMedGoogle Scholar
  17. 17.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMedGoogle Scholar
  18. 18.
    Nashun, B., Hill, P. W., & Hajkova, P. (2015). Reprogramming of cell fate: epigenetic memory and the erasure of memories past. The EMBO Journal, 34(10), 1296–1308.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Plath, K., & Lowry, W. E. (2011). Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews. Genetics, 12(4), 253–265.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mikkelsen, T. S., Hanna, J., Zhang, X., et al. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature, 454, 49–55.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pasque, V., Radzisheuskaya, A., Gillich, A., et al. (2012). Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. Journal of Cell Science, 125(Pt 24), 6094–6104.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gaspar-Maia, A., Qadeer, Z. A., Hasson, D., et al. (2013). MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nature Communications, 4, 1565.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sridharan, A., Chen, Q., Tang, K. F., Ooi, E. E., Hibberd, M. L., & Chen, J. (2013). Inhibition of megakaryocyte development in the bone marrow underlies dengue virus-induced thrombocytopenia in humanized mice. Journal of Virology, 87(21), 11648–11658.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ma, T., Xie, M., Laurent, T., & Ding, S. (2013). Progress in the reprogramming of somatic cells. Circulation Research, 112(3), 562–574.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yamanaka, S. (2009). A fresh look at iPS cells. Cell, 137(1), 13–17.CrossRefPubMedGoogle Scholar
  26. 26.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.CrossRefPubMedGoogle Scholar
  27. 27.
    Meissner, A., Wernig, M., & Jaenisch, R. (2007). Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnology, 25(10), 1177.CrossRefPubMedGoogle Scholar
  28. 28.
    Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322, 949–953.CrossRefPubMedGoogle Scholar
  29. 29.
    Yu, J., Chau, K. F., Vodyanik, M. A., Jiang, J., & Jiang, Y. (2011). Efficient feeder-free episomal reprogramming with small molecules. PloS One, 6(3), e17557.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bar-Nur, O., Brumbaugh, J., Verheul, C., et al. (2014). Small molecules facilitate rapid and synchronous iPSC generation. Nature Methods, 11(11), 1170–1176.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brouwer, M., Zhou, H., and Nadif Kasri, N. (2015). Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Reviews.Google Scholar
  32. 32.
    Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Okita, K., Hong, H., Takahashi, K., & Yamanaka, S. (2010). Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nature Protocols, 5(3), 418–428.CrossRefPubMedGoogle Scholar
  34. 34.
    Woltjen, K., Michael, I. P., Mohseni, P., Desai, R., Mileikovsky, M., & Hamalainen, R. (2009). piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766–770.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jia, F., Wilson, K. D., Sun, N., et al. (2010). A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7(3), 197–199.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., & Slukvin, I. I. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797–801.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Seki, T., Yuasa, S., Oda, M., et al. (2010). Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell, 7(1), 11–14.CrossRefPubMedGoogle Scholar
  38. 38.
    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903), 945–949.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhou, W., & Freed, C. R. (2009). Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27(11), 2667–2674.CrossRefPubMedGoogle Scholar
  40. 40.
    Kim, D., Kim, C. H., Moon, J. I., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6), 472–476.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., & Lin, T. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4, 381–384.CrossRefPubMedGoogle Scholar
  42. 42.
    Warren, L., Manos, P. D., Ahfeldt, T., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., et al. (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Miyoshi, N., Ishii, H., Nagano, H., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature MicroRNAs. Cell Stem Cell, 8(6), 633–638.CrossRefPubMedGoogle Scholar
  45. 45.
    Wu, S. C., & Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nature Reviews. Molecular Cell Biology, 11(9), 607–620.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cohen, D. E., & Melton, D. (2011). Turning straw into gold: directing cell fate for regenerative medicine. Nature Reviews. Genetics, 12(4), 243–252.CrossRefPubMedGoogle Scholar
  47. 47.
    Jopling, C., Boue, S., & Izpisua Belmonte, J. C. (2011). Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature Reviews. Molecular Cell Biology, 12(2), 79–89.CrossRefPubMedGoogle Scholar
  48. 48.
    Weintraub, H., Tapscott, S. J., Davis, R. L., et al. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America, 86(14), 5434–5438.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Graf, T. (2002). Differentiation plasticity of hematopoietic cells. Blood, 99(9), 3089–3101.CrossRefPubMedGoogle Scholar
  50. 50.
    Xie, H., Ye, M., Feng, R., & Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell, 117(5), 663–676.CrossRefPubMedGoogle Scholar
  51. 51.
    Shen, C. N., Slack, J. M., & Tosh, D. (2000). Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biology, 2(12), 879–887.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455(7213), 627–632.CrossRefPubMedGoogle Scholar
  53. 53.
    Pang, Z.P., Yang, N., Vierbuchen, T., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature, Advance Online Publication.Google Scholar
  54. 54.
    Ambasudhan, R., Talantova, M., Coleman, R., et al. (2011). Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell, 9(2), 113–118.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nam, Y. J., Song, K., Luo, X., et al. (2013). Reprogramming of human fibroblasts toward a cardiac fate. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5588–5593.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fu, J. D., Stone, N. R., Liu, L., et al. (2013). Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports, 1(3), 235–247.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhang, K., Liu, G.H., Yi, F., et al. (2013). Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein and Cell.Google Scholar
  58. 58.
    Outani, H., Okada, M., Yamashita, A., Nakagawa, K., Yoshikawa, H., & Tsumaki, N. (2013). Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PloS One, 8(10), e77365.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lengner, C. J. (2010). iPS cell technology in regenerative medicine. Annals of the New York Academy of Sciences, 1192, 38–44.CrossRefPubMedGoogle Scholar
  60. 60.
    Thoma, E. C., Merkl, C., Heckel, T., et al. (2014). Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports, 3(4), 539–547.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhou, H., Li, W., Zhu, S., et al. (2010). Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. The Journal of Biological Chemistry, 285(39), 29676–29680.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sterneckert, J., Hoing, S., & Scholer, H. R. (2012). Concise review: Oct4 and more: the reprogramming expressway. Stem Cells, 30(1), 15–21.CrossRefPubMedGoogle Scholar
  63. 63.
    De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25(1), 100–106.CrossRefPubMedGoogle Scholar
  64. 64.
    Moschidou, D., Mukherjee, S., Blundell, M. P., et al. (2012). Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Molecular Therapy, 20(10), 1953–1967.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    De Coppi, P. (2013). Regenerative medicine for congenital malformation: new opportunities for therapy. CellR4, 1(2).Google Scholar
  66. 66.
    Glover, T. W., Coyle-Morris, J., Pearce-Birge, L., Berger, C., & Gemmill, R. M. (1986). DNA demethylation induced by 5-azacytidine does not affect fragile X expression. American Journal of Human Genetics, 38(3), 309–318.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Harris, D. M., Hazan-Haley, I., Coombes, K., et al. (2011). Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PloS One, 6(6), e21250.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pennarossa, G., Maffei, S., Campagnol, M., Rahman, M.M., Brevini, T.A., and Gandolfi, F. (2014). Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Reviews.Google Scholar
  69. 69.
    Brevini, T.A., Pennarossa, G., Rahman, M.M., et al. (2014). Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Reviews.Google Scholar
  70. 70.
    Enright, B. P., Kubota, C., Yang, X., & Tian, X. C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine. Biology of Reproduction, 69(3), 896–901.CrossRefPubMedGoogle Scholar
  71. 71.
    Wozniak, R. J., Klimecki, W. T., Lau, S. S., Feinstein, Y., & Futscher, B. W. (2007). 5-Aza-2′-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene, 26(1), 77–90.CrossRefPubMedGoogle Scholar
  72. 72.
    Ding, X., Wang, Y., Zhang, D., Guo, Z., & Zhang, Y. (2008). Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2′-deoxycytidine and trichostatin A. Theriogenology, 70(4), 622–630.CrossRefPubMedGoogle Scholar
  73. 73.
    Segura-Pacheco, B., Avalos, B., Rangel, E., Velazquez, D., & Cabrera, G. (2007). HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo. Genet Vaccines Ther, 5, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Xiong, X., Lan, D., Li, J., et al. (2013). Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency. Cellular Reprogramming, 15(4), 293–300.PubMedGoogle Scholar
  75. 75.
    Rim, J. S., Strickler, K. L., Barnes, C. W., et al. (2012). Temporal epigenetic modifications differentially regulate ES cell-like colony formation and maturation. Stem Cell Discovery, 2(2), 45–57.CrossRefGoogle Scholar
  76. 76.
    Bhatla, T., Wang, J., Morrison, D. J., et al. (2012). Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood, 119(22), 5201–5210.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Milhem, M., Mahmud, N., Lavelle, D., et al. (2004). Modification of hematopoietic stem cell fate by 5aza 2′deoxycytidine and trichostatin A. Blood, 103(11), 4102–4110.CrossRefPubMedGoogle Scholar
  78. 78.
    Kishigami, S., Bui, H. T., Wakayama, S., et al. (2007). Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. The Journal of Reproduction and Development, 53(1), 165–170.CrossRefPubMedGoogle Scholar
  79. 79.
    Shi, L. H., Ai, J. S., Ouyang, Y. C., et al. (2008). Trichostatin A and nuclear reprogramming of cloned rabbit embryos. Journal of Animal Science, 86(5), 1106–1113.CrossRefPubMedGoogle Scholar
  80. 80.
    Surani, M. A., Durcova-Hills, G., Hajkova, P., Hayashi, K., & Tee, W. W. (2008). Germ line, stem cells, and epigenetic reprogramming. Cold Spring Harbor Symposia on Quantitative Biology, 73, 9–15.CrossRefPubMedGoogle Scholar
  81. 81.
    Huangfu, D., Maehr, R., Guo, W., et al. (2008). Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 26(7), 795–797.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhu, S., Li, W., Zhou, H., et al. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7(6), 651–655.CrossRefPubMedGoogle Scholar
  83. 83.
    Hou, P., Li, Y., Zhang, X., et al. (2013). Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 341(6146), 651–654.CrossRefPubMedGoogle Scholar
  84. 84.
    Mirakhori, F., Zeynali, B., Kiani, S., & Baharvand, H. (2015). Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell Journal, 17(1), 153–158.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Stresemann, C., & Lyko, F. (2008). Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. International Journal of Cancer, 123(1), 8–13.CrossRefPubMedGoogle Scholar
  86. 86.
    Jones, P. A. (1985). Altering gene expression with 5-azacytidine. Cell, 40(3), 485–486.CrossRefPubMedGoogle Scholar
  87. 87.
    Jones, P. A. (1985). Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacology & Therapeutics, 28(1), 17–27.CrossRefGoogle Scholar
  88. 88.
    Taylor, S. M., & Jones, P. A. (1979). Multiple new phenotypes induced in 10 T1/2 and 3 T3 cells treated with 5-azacytidine. Cell, 17(4), 771–779.CrossRefPubMedGoogle Scholar
  89. 89.
    Pennarossa, G., Maffei, S., Campagnol, M., Tarantini, L., Gandolfi, F., & Brevini, T. A. (2013). Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8948–8953.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Cheng, L., Hu, W., Qiu, B., et al. (2014). Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Research, 24(6), 665–679.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Georgia Pennarossa
    • 1
  • Alessandro Zenobi
    • 1
  • Cecilia E. Gandolfi
    • 1
  • Elena F. M. Manzoni
    • 1
  • Fulvio Gandolfi
    • 1
  • Tiziana A. L. Brevini
    • 1
    Email author
  1. 1.Laboratory of Biomedical Embryology, UnistemUniversità degli Studi di MilanoMilanItaly

Personalised recommendations