Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation

Abstract

Changes in cell identity occur in adult mammalian organisms but are rare and often linked to disease. Research in the last few decades has thrown light on how to manipulate cell fate, but the conversion of a particular cell type into another within a living organism (also termed in vivo transdifferentiation) has only been recently achieved in a limited number of tissues. Although the therapeutic promise of this strategy for tissue regeneration and repair is exciting, important efficacy and safety concerns will need to be addressed before it becomes a reality in the clinical practice. Here, we review the most relevant in vivo transdifferentiation studies in adult mammalian animal models, offering a critical assessment of this potentially powerful strategy for regenerative medicine.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Graf, T. (2011). Historical origins of transdifferentiation and reprogramming. Cell Stem Cell, 9(6), 504–16.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Slack, J. M. (2007). Metaplasia and transdifferentiation: from pure biology to the clinic. Nature Reviews Molecular Cell Biology, 8(5), 369–78.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Davis, R. L., Weintraub, H., & Lassar, A. B. (1987). Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell, 51(6), 987–1000.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Weintraub, H., Tapscott, S. J., Davis, R. L., et al. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proceedings of the National Academy of Sciences of the United States of America, 86(14), 5434–8.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  5. 5.

    Schneuwly, S., Klemenz, R., & Gehring, W. J. (1987). Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. Nature, 325(6107), 816–8.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Murry, C. E., Kay, M. A., Bartosek, T., Hauschka, S. D., & Schwartz, S. M. (1996). Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. Journal of Clinical Investigation, 98(10), 2209–17.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  7. 7.

    Ferber, S., Halkin, A., Cohen, H., et al. (2000). Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nature Medicine, 6(5), 568–72.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., & Melton, D. A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 455(7213), 627–32.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Barrett, N. R. (1957). The lower esophagus lined by columnar epithelium. Surgery, 41(6), 881–94.

    CAS  PubMed  Google Scholar 

  10. 10.

    Spechler, S. J. (2002). Clinical practice. Barrett’s Esophagus. New England Journal of Medicine, 346(11), 836–42.

    Article  PubMed  Google Scholar 

  11. 11.

    Hay, E. D., & Zuk, A. (1995). Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. American Journal of Kidney Diseases, 26(4), 678–90.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Tsukamoto, H., She, H., Hazra, S., Cheng, J., & Miyahara, T. (2006). Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation. Journal of Gastroenterology and Hepatology, 21(Suppl 3), S102–5.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Li, Y., & Huard, J. (2002). Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. American Journal of Pathology, 161(3), 895–907.

    PubMed Central  Article  PubMed  Google Scholar 

  14. 14.

    He, J., Lu, H., Zou, Q., & Luo, L. (2014). Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology, 146(3), 789–800 e8.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Zhang, R., Han, P., Yang, H., et al. (2013). In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature, 498(7455), 497–501.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  16. 16.

    Suetsugu-Maki, R., Maki, N., Nakamura, K., et al. (2012). Lens regeneration in axolotl: new evidence of developmental plasticity. BMC Biology, 10, 103.

    PubMed Central  Article  PubMed  Google Scholar 

  17. 17.

    Wang, T., Chai, R., Kim, G. S., et al. (2015). Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nature Communications, 6, 6613.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  18. 18.

    Ber, I., Shternhall, K., Perl, S., et al. (2003). Functional, persistent, and extended liver to pancreas transdifferentiation. Journal of Biological Chemistry, 278(34), 31950–7.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Miyatsuka, T., Kaneto, H., Kajimoto, Y., et al. (2003). Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochemical and Biophysical Research Communications, 310(3), 1017–25.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Kojima, H., Fujimiya, M., Matsumura, K., et al. (2003). NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nature Medicine, 9(5), 596–603.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Kaneto, H., Nakatani, Y., Miyatsuka, T., et al. (2005). PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes, 54(4), 1009–22.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–76.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Yechoor, V., Liu, V., Espiritu, C., et al. (2009). Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Developmental Cell, 16(3), 358–73.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  24. 24.

    Banga, A., Akinci, E., Greder, L. V., Dutton, J. R., & Slack, J. M. (2012). In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15336–41.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  25. 25.

    Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–7.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Hartman, Z. C., Appledorn, D. M., & Amalfitano, A. (2008). Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Research, 132(1–2), 1–14.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  27. 27.

    Mozaffarian, D., Benjamin, E. J., Go, A. S., et al. (2015). Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation, 131(4), e29–322.

    Article  PubMed  Google Scholar 

  28. 28.

    Qian, L., Huang, Y., Spencer, C. I., et al. (2012). In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 485(7400), 593–8.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  29. 29.

    Inagawa, K., Miyamoto, K., Yamakawa, H., et al. (2012). Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circulation Research, 111(9), 1147–56.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Song, K., Nam, Y. J., Luo, X., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 485(7400), 599–604.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  31. 31.

    Jayawardena, T. M., Egemnazarov, B., Finch, E. A., et al. (2012). MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, 110(11), 1465–73.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  32. 32.

    Jayawardena, T. M., Finch, E. A., Zhang, L., et al. (2015). MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circulation Research, 116(3), 418–24.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Munshi, N. V., & Olson, E. N. (2014). Translational medicine. Improving cardiac rhythm with a biological pacemaker. Science, 345(6194), 268–9.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  34. 34.

    Kapoor, N., Liang, W., Marban, E., & Cho, H. C. (2013). Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nature Biotechnology, 31(1), 54–62.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  35. 35.

    Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E., & Cingolani, E. (2014). Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Science Translational Medicine, 6(245), 245ra94.

    Article  PubMed  Google Scholar 

  36. 36.

    Torper, O., Pfisterer, U., Wolf, D. A., et al. (2013). Generation of induced neurons via direct conversion in vivo. Proceedings of the National Academy of Sciences of the United States of America, 110(17), 7038–43.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  37. 37.

    Niu, W., Zang, T., Zou, Y., et al. (2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nature Cell Biology, 15(10), 1164–75.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Niu, W., T. Zang, D.K. Smith, et al. (2015). SOX2 Reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports.

  39. 39.

    Su, Z., Niu, W., Liu, M. L., Zou, Y., & Zhang, C. L. (2014). In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nature Communications, 5, 3338.

    PubMed Central  PubMed  Google Scholar 

  40. 40.

    Yiu, G., & He, Z. (2006). Glial inhibition of CNS axon regeneration. Nature Review Neuroscience, 7(8), 617–27.

    Article  CAS  Google Scholar 

  41. 41.

    Guo, Z., Zhang, L., Wu, Z., Chen, Y., Wang, F., & Chen, G. (2014). In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14(2), 188–202.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  42. 42.

    Rouaux, C., & Arlotta, P. (2013). Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nature Cell Biology, 15(2), 214–21.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  43. 43.

    De la Rossa, A., Bellone, C., Golding, B., et al. (2013). In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nature Neuroscience, 16(2), 193–200.

    Article  PubMed  Google Scholar 

  44. 44.

    Vivien, C., Scerbo, P., Girardot, F., Le Blay, K., Demeneix, B. A., & Coen, L. (2012). Non-viral expression of mouse Oct4, Sox2, and Klf4 transcription factors efficiently reprograms tadpole muscle fibers in vivo. Journal of Biological Chemistry, 287(10), 7427–35.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  45. 45.

    Yilmazer, A., de Lazaro, I., Bussy, C., & Kostarelos, K. (2013). In vivo cell reprogramming towards pluripotency by virus-free overexpression of defined factors. PLoS One, 8(1), e54754.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  46. 46.

    Yilmazer, A., I. de Lazaro, C. Bussy, and K. Kostarelos. (2013). In vivo reprogramming of adult somatic cells to pluripotency by overexpression of Yamanaka factors. JoVE 17(82).

Download references

Acknowledgments

Irene de Lázaro would like to thank Obra Social LaCaixa, University College London (UCL) and the University of Manchester for jointly funding this project.

Conflicts of interest

The authors indicate no potential conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Kostarelos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Lázaro, I., Kostarelos, K. Engineering Cell Fate for Tissue Regeneration by In Vivo Transdifferentiation. Stem Cell Rev and Rep 12, 129–139 (2016). https://doi.org/10.1007/s12015-015-9624-6

Download citation

Key words

  • Transdifferentiation
  • Reprogramming
  • Cell fate
  • Regeneration
  • Tissue repair