Leri, A., Kajstura, J., Anversa, P., & Frishman, W. H. (2008). Myocardial regeneration and stem cell repair. Current Problems in Cardiology, 33, 91–153.
Article
PubMed
Google Scholar
Jackson, K. A., Majka, S. M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107, 1395–402.
PubMed Central
CAS
Article
PubMed
Google Scholar
Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–9. discussion 229–30.
CAS
Article
PubMed
Google Scholar
Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–5.
CAS
Article
PubMed
Google Scholar
Fisher, S.A., Brunskill, S.J., Doree, C., Mathur, A., Taggart, D.P., & Martin-Rendon, E. (2014). Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. The Cochrane Collaboration., John Wiley & Sons, Ltd.
Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research, 109, 941–61.
PubMed Central
CAS
Article
PubMed
Google Scholar
Kocaefe, C., Balci, D., Hayta, B. B., & Can, A. (2010). Reprogramming of human umbilical cord stromal mesenchymal stem cells for myogenic differentiation and muscle repair. Stem Cell Reviews, 6, 512–22.
Article
PubMed
Google Scholar
Zhang, W., Liu, X. C., Yang, L., et al. (2013). Wharton’s jelly-derived mesenchymal stem cells promote myocardial regeneration and cardiac repair after miniswine acute myocardial infarction. Coronary Artery Disease, 24, 549–58.
CAS
Article
PubMed
Google Scholar
Wu, K. H., Mo, X. M., Zhou, B., et al. (2009). Cardiac potential of stem cells from whole human umbilical cord tissue. Journal of Cellular Biochemistry, 107, 926–32.
CAS
Article
PubMed
Google Scholar
Kadivar, M., Khatami, S., Mortazavi, Y., Shokrgozar, M. A., Taghikhani, M., & Soleimani, M. (2006). In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 340, 639–47.
CAS
Article
PubMed
Google Scholar
Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–74.
CAS
Article
PubMed
Google Scholar
Hu, J., Yu, X., Wang, Z., et al. (2013). Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 60, 347–57.
CAS
Article
PubMed
Google Scholar
Li, X., Hu, Y.D., Guo, Y., et al. (2014). Safety and Efficacy of Intracoronary Human Umbilical Cord-Derived Mesenchymal Stem Cell Treatment for Very Old Patients with Coronary Chronic Total Occlusion. Curr Pharm Des.
Liang, J., Gu, F., Wang, H., et al. (2010). Mesenchymal stem cell transplantation for diffuse alveolar hemorrhage in SLE. Nature Reviews. Rheumatology, 6, 486–9.
Article
PubMed
Google Scholar
Liu, X., Zheng, P., Wang, X., et al. (2014). A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Research & Therapy, 5, 57.
Article
Google Scholar
Shi, D., Wang, D., Li, X., et al. (2012). Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus. Clinical Rheumatology, 31, 841–6.
Article
PubMed
Google Scholar
Shi, M., Zhang, Z., Xu, R., et al. (2012). Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients. Stem Cells Translational Medicine, 1, 725–31.
PubMed Central
CAS
Article
PubMed
Google Scholar
Sun, L., Wang, D., Liang, J., et al. (2010). Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 62, 2467–75.
CAS
Article
PubMed
Google Scholar
Wang, L., Li, J., Liu, H., et al. (2013). Pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. Journal of Gastroenterology and Hepatology, 28(Suppl 1), 85–92.
CAS
Article
PubMed
Google Scholar
Wang, S., Cheng, H., Dai, G., et al. (2013). Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Research, 1532, 76–84.
CAS
Article
PubMed
Google Scholar
Wu, K. H., Tsai, C., Wu, H. P., Sieber, M., Peng, C. T., & Chao, Y. H. (2013). Human application of ex vivo expanded umbilical cord-derived mesenchymal stem cells: enhance hematopoiesis after cord blood transplantation. Cell Transplantation, 22, 2041–51.
Article
PubMed
Google Scholar
Zhang, Z., Fu, J., Xu, X., et al. (2013). Safety and immunological responses to human mesenchymal stem cell therapy in difficult-to-treat HIV-1-infected patients. AIDS, 27, 1283–93.
PubMed Central
CAS
Article
PubMed
Google Scholar
Jin, J. L., Liu, Z., Lu, Z. J., et al. (2013). Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Current Neurovascular Research, 10, 11–20.
CAS
Article
PubMed
Google Scholar
Ma, N., Ladilov, Y., Moebius, J. M., et al. (2006). Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovascular Research, 71, 158–69.
CAS
Article
PubMed
Google Scholar
Tse, H. F., Yiu, K. H., & Lau, C. P. (2007). Bone marrow stem cell therapy for myocardial angiogenesis. Current Vascular Pharmacology, 5, 103–12.
CAS
Article
PubMed
Google Scholar
Menasche, P. (2011). Cardiac cell therapy: lessons from clinical trials. Journal of Molecular and Cellular Cardiology, 50, 258–65.
CAS
Article
PubMed
Google Scholar
Li, T. S., Kubo, M., Ueda, K., Murakami, M., Mikamo, A., & Hamano, K. (2010). Impaired angiogenic potency of bone marrow cells from patients with advanced age, anemia, and renal failure. Journal of Thoracic and Cardiovascular Surgery, 139, 459–65.
Article
PubMed
Google Scholar
Kissel, C. K., Lehmann, R., Assmus, B., et al. (2007). Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. Journal of the American College of Cardiology, 49, 2341–9.
Article
PubMed
Google Scholar
Sorrentino, S. A., Bahlmann, F. H., Besler, C., et al. (2007). Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation, 116, 163–73.
CAS
Article
PubMed
Google Scholar
Assmus, B., Fischer-Rasokat, U., Honold, J., et al. (2007). Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circulation Research, 100, 1234–41.
CAS
Article
PubMed
Google Scholar
Coskun, H., & Can, A. (2015). The assessment of the in vivo to in vitro cellular transition of human umbilical cord multipotent stromal cells. Placenta, 36, 232–9.
CAS
Article
PubMed
Google Scholar
Cooper, K., SenMajumdar, A., & Viswanathan, C. (2010). Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum. International Journal of Stem Cells, 3, 119–28.
PubMed Central
CAS
Article
PubMed
Google Scholar
(2013). European Pharmacopoeia. European Directorate for the Quality of Medicines & HealthCare (EDQM). Strasbourg, France.
Martins, J. P., Santos, J. M., de Almeida, J. M., et al. (2014). Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data. Stem Cell Research & Therapy, 5, 9.
Article
Google Scholar
Chen, S. L., Fang, W. W., Ye, F., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 94, 92–5.
Article
PubMed
Google Scholar
Fisher, S. A., Doree, C., Brunskill, S. J., Mathur, A., & Martin-Rendon, E. (2013). Bone marrow stem cell treatment for ıschemic heart disease in patients with no option of revascularization: a systematic review and meta-analysis. PloS One, 8, e64669.
PubMed Central
CAS
Article
PubMed
Google Scholar
Kandala, J., Upadhyay, G. A., Pokushalov, E., Wu, S., Drachman, D. E., & Singh, J. P. (2013). Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. American Journal of Cardiology, 112, 217–25.
Article
PubMed
Google Scholar
Friis, T., Haack-Sorensen, M., Mathiasen, A. B., et al. (2011). Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scandinavian Cardiovascular Journal, 45, 161–8.
Article
PubMed
Google Scholar
Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–86.
PubMed Central
CAS
Article
PubMed
Google Scholar
Houtgraaf, J. H., den Dekker, W. K., van Dalen, B. M., et al. (2012). First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction. Journal of the American College of Cardiology, 59, 539–40.
Article
PubMed
Google Scholar
Katritsis, D. G., Sotiropoulou, P., Giazitzoglou, E., Karvouni, E., & Papamichail, M. (2007). Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace, 9, 167–71.
Article
PubMed
Google Scholar
Katritsis, D. G., Sotiropoulou, P. A., Karvouni, E., et al. (2005). Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheterization and Cardiovascular Interventions, 65, 321–9.
Article
PubMed
Google Scholar
Mohyeddin-Bonab, M., Mohamad-Hassani, M. R., Alimoghaddam, K., et al. (2007). Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Archives of Iranian Medicine, 10, 467–73.
PubMed
Google Scholar
Kinnaird, T., Stabile, E., Burnett, M. S., et al. (2004). Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 109, 1543–9.
CAS
Article
PubMed
Google Scholar
Karahuseyinoglu, S., Cinar, O., Kilic, E., et al. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells, 25, 319–31.
CAS
Article
PubMed
Google Scholar
Santos, J. M., Barcia, R. N., Simoes, S. I., et al. (2013). The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX(R)) in the treatment of inflammatory arthritis. Journal of Translational Medicine, 11, 18.
PubMed Central
CAS
Article
PubMed
Google Scholar
La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–82.
Article
PubMed
Google Scholar
Fong, C. Y., Chak, L. L., Biswas, A., et al. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7, 1–16.
CAS
Article
PubMed
Google Scholar
Kadner, A., Zund, G., Maurus, C., et al. (2004). Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. European Journal of Cardio-Thoracic Surgery, 25, 635–41.
Article
PubMed
Google Scholar
Pereira, W. C., Khushnooma, I., Madkaikar, M., & Ghosh, K. (2008). Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. Journal of Tissue Engineering and Regenerative Medicine, 2, 394–9.
CAS
Article
PubMed
Google Scholar
Hollweck, T., Hartmann, I., Eblenkamp, M., et al. (2011). Cardiac differentiation of human Wharton’s Jelly stem cells – experimental comparison of protocols. The Open Tissue Engineering and Regenerative Medicine Journal, 4, 95–102.
Article
Google Scholar
Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringden, O. (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–6.
Article
PubMed
Google Scholar
Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PloS One, 5, e9016.
PubMed Central
Article
PubMed
Google Scholar
Anzalone, R., Corrao, S., Lo Iacono, M., et al. (2013). Isolation and characterization of CD276+/HLA-E+ human subendocardial mesenchymal stem cells from chronic heart failure patients: analysis of differentiative potential and immunomodulatory markers expression. Stem Cells and Development, 22, 1–17.
CAS
Article
PubMed
Google Scholar
Lopez, Y., Lutjemeier, B., Seshareddy, K., et al. (2013). Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report. Current Stem Cell Research & Therapy, 8, 46–59.
CAS
Article
Google Scholar
Santos Nascimento, D., Mosqueira, D., Sousa, L. M., et al. (2014). Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms. Stem Cell Research & Therapy, 5, 5.
Article
Google Scholar