Skip to main content

Advertisement

Log in

Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Congenital heart disease (CHD) remains a significant health problem, with a growing population of survivors with chronic disease. Despite intense efforts to understand the genetic basis of CHD in humans, the etiology of most CHD is unknown. Furthermore, new models of CHD are required to better understand the development of CHD and to explore novel therapies for this patient population. In this review, we highlight the role that human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes can serve to enhance our understanding of the development, pathophysiology and potential therapeutic targets for CHD. We highlight the use of hiPSC-derived cardiomyocytes to model gene regulatory interactions, cell-cell interactions and tissue interactions contributing to CHD. We further emphasize the importance of using hiPSC-derived cardiomyocytes as personalized research models. The use of hiPSCs presents an unprecedented opportunity to generate disease-specific cellular models, investigate the underlying molecular mechanisms of disease and uncover new therapeutic targets for CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Syrmou, A., Tzetis, M., Fryssira, H., Kosma, K., Oikonomakis, V., Giannikou, K., et al. (2013). Array comparative genomic hybridization as a clinical diagnostic tool in syndromic and nonsyndromic congenital heart disease. Pediatric Research, 73(6), 772–776.

    Article  CAS  PubMed  Google Scholar 

  2. Fahed, A. C., Gelb, B. D., Seidman, J. G., & Seidman, C. E. (2013). Genetics of congenital heart disease: the glass half empty. Circulation Research, 112(4), 707–720.

    Article  CAS  PubMed  Google Scholar 

  3. Pierpont, M. E., Basson, C. T., Benson, D. W., Gelb, B. D., Giglia, T. M., Goldmuntz, E., et al. (2007). Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American heart association congenital cardiac defects committee, council on cardiovascular disease in the young: endorsed by the American academy of pediatrics. Circulation, 115(23), 3015–3038.

    Article  PubMed  Google Scholar 

  4. Pueschel, S. M. (1990). Clinical aspects of Down syndrome from infancy to adulthood. American Journal of Medical Genetics Supplement, 752–756.

  5. Goldhaber, S. Z., Brown, W. D., & Sutton, M. G. (1987). High frequency of mitral valve prolapse and aortic regurgitation among asymptomatic adults with Down’s syndrome. JAMA, 258(13), 1793–1795.

    Article  CAS  PubMed  Google Scholar 

  6. Freeman, S. B., Taft, L. F., Dooley, K. J., Allran, K., Sherman, S. L., Hassold, T. J., et al. (1998). Population-based study of congenital heart defects in Down syndrome. American Journal of Medical Genetics, 80(3), 213–217.

    Article  CAS  PubMed  Google Scholar 

  7. Källén, B., Mastroiacovo, P., & Robert, E. (1996). Major congenital malformations in Down syndrome. American Journal of Medical Genetics, 65(2), 160–166.

    Article  PubMed  Google Scholar 

  8. Prandstraller, D., Mazzanti, L., Picchio, F. M., Magnani, C., Bergamaschi, R., Perri, A., et al. (1999). Turner’s syndrome: cardiologic profile according to the different chromosomal patterns and long-term clinical follow-Up of 136 nonpreselected patients. Pediatric Cardiology, 20(2), 108–112.

    Article  CAS  PubMed  Google Scholar 

  9. Mazzanti, L., & Cacciari, E. (1998). Congenital heart disease in patients with Turner’s syndrome. Italian study group for turner syndrome (ISGTS). The Journal of Pediatrics, 133(5), 688–692.

    Article  CAS  PubMed  Google Scholar 

  10. Mazzanti, L., Prandstraller, D., Tassinari, D., Rubino, I., Santucci, S., Picchio, F. M., et al. (1988). Heart disease in Turner’s syndrome. Helvetica Paediatrica Acta, 43(1–2), 25–31.

    CAS  PubMed  Google Scholar 

  11. Lin, A. E., Lippe, B. M., Geffner, M. E., Gomes, A., Lois, J. F., Barton, C. W., et al. (1986). Aortic dilation, dissection, and rupture in patients with Turner syndrome. The Journal of Pediatrics, 109(5), 820–826.

    Article  CAS  PubMed  Google Scholar 

  12. Lin, A. E., Lippe, B., & Rosenfeld, R. G. (1998). Further delineation of aortic dilation, dissection, and rupture in patients with Turner syndrome. Pediatrics, 102(1), e12.

    Article  CAS  PubMed  Google Scholar 

  13. Van Praagh, S., Truman, T., Firpo, A., Bano-Rodrigo, A., Fried, R., McManus, B., et al. (1989). Cardiac malformations in trisomy-18: a study of 41 postmortem cases. Journal of the American College of Cardiology, 13(7), 1586–1597.

    Article  PubMed  Google Scholar 

  14. Matsuoka, R., Misugi, K., Goto, A., Gilbert, E. F., & Ando, M. (1983). Congenital heart anomalies in the trisomy 18 syndrome, with reference to congenital polyvalvular disease. American Journal of Medical Genetics, 14(4), 657–668.

    Article  CAS  PubMed  Google Scholar 

  15. Ryan, A. K., Goodship, J. A., Wilson, D. I., Philip, N., Levy, A., Seidel, H., et al. (1997). Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. Journal of Medical Genetics, 34(10), 798–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. McDonald-McGinn, D. M., Kirschner, R., Goldmuntz, E., Sullivan, K., Eicher, P., Gerdes, M., et al. (1999). The Philadelphia story: the 22q11.2 deletion: report on 250 patients. Genetic Counseling, 10(1), 11–24.

    CAS  PubMed  Google Scholar 

  17. Johnson, T. R., Goldmuntz, E., McDonald-McGinn, D. M., Zackai, E. H., & Fogel, M. A. (2005). Cardiac magnetic resonance imaging for accurate diagnosis of aortic arch anomalies in patients with 22q11.2 deletion. The American Journal of Cardiology, 96(12), 1726–1730.

    Article  CAS  PubMed  Google Scholar 

  18. McDonald-McGinn, D. M., LaRossa, D., Goldmuntz, E., Sullivan, K., Eicher, P., Gerdes, M., et al. (1997). The 22q11.2 deletion: screening, diagnostic workup, and outcome of results; report on 181 patients. Genetic Testing, 1(2), 99–108.

    Article  CAS  PubMed  Google Scholar 

  19. Eronen, M., Peippo, M., Hiippala, A., Raatikka, M., Arvio, M., Johansson, R., & Kähkönen, M. (2002). Cardiovascular manifestations in 75 patients with Williams syndrome. Journal of Medical Genetics, 39(8), 554–558.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bruno, E., Rossi, N., Thüer, O., Córdoba, R., & Alday, L. E. (2003). Cardiovascular findings, and clinical course, in patients with Williams syndrome. Cardiology in the Young, 13(6), 532–536.

    PubMed  Google Scholar 

  21. Wu, Y. Q., Sutton, V. R., Nickerson, E., Lupski, J. R., Potocki, L., Korenberg, J. R., et al. (1998). Delineation of the common critical region in Williams syndrome and clinical correlation of growth, heart defects, ethnicity, and parental origin. American Journal of Medical Genetics, 78(1), 82–89.

    Article  CAS  PubMed  Google Scholar 

  22. Grossfeld, P. D., Mattina, T., Lai, Z., Favier, R., Jones, K. L., Cotter, F., & Jones, C. (2004). The 11q terminal deletion disorder: a prospective study of 110 cases. American Journal of Medical Genetics Part A, 129A(1), 51–61.

    Article  PubMed  Google Scholar 

  23. Tartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., van der Burgt, I., et al. (2002). PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. The American Journal of Human Genetics, 70(6), 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  24. Tartaglia, M., Mehler, E. L., Goldberg, R., Zampino, G., Brunner, H. G., Kremer, H., et al. (2001). Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nature Genetics, 29(4), 465–468.

    Article  CAS  PubMed  Google Scholar 

  25. Tartaglia, M., Pennacchio, L. A., Zhao, C., Yadav, K. K., Fodale, V., Sarkozy, A., et al. (2007). Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genetics, 39(1), 75–79.

    Article  CAS  PubMed  Google Scholar 

  26. Pandit, B., Sarkozy, A., Pennacchio, L. A., Carta, C., Oishi, K., Martinelli, S., et al. (2007). Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genetics, 39(8), 1007–1012.

    Article  CAS  PubMed  Google Scholar 

  27. Sarkozy, A., Carta, C., Moretti, S., Zampino, G., Digilio, M. C., Pantaleoni, F., et al. (2009). Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Human Mutation, 30(4), 695–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bertola, D. R., Yamamoto, G. L., Almeida, T. F., Buscarilli, M., Jorge, A. A., Malaquias, A. C., et al. (2014). Further evidence of the importance of RIT1 in Noonan syndrome. American Journal of Medical Genetics Part A, 164A(11), 2952–2957.

    Article  PubMed  CAS  Google Scholar 

  29. Li, L., Krantz, I. D., Deng, Y., Genin, A., Banta, A. B., Collins, C. C., et al. (1997). Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genetics, 16(3), 243–251.

    Article  CAS  PubMed  Google Scholar 

  30. McElhinney, D. B., Krantz, I. D., Bason, L., Piccoli, D. A., Emerick, K. M., Spinner, N. B., & Goldmuntz, E. (2002). Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation, 106(20), 2567–2574.

    Article  PubMed  Google Scholar 

  31. Ruiz-Perez, V. L., Ide, S. E., Strom, T. M., Lorenz, B., Wilson, D., Woods, K., et al. (2000). Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nature Genetics, 24(3), 283–286.

    Article  CAS  PubMed  Google Scholar 

  32. Ruiz-Perez, V. L., Tompson, S. W., Blair, H. J., Espinoza-Valdez, C., Lapunzina, P., Silva, E. O., et al. (2003). Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. The American Journal of Human Genetics, 72(3), 728–732.

    Article  CAS  PubMed  Google Scholar 

  33. Basson, C. T., Bachinsky, D. R., Lin, R. C., Levi, T., Elkins, J. A., Soults, J., et al. (1997). Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nature Genetics, 15(1), 30–35.

    Article  CAS  PubMed  Google Scholar 

  34. Basson, C. T., Huang, T., Lin, R. C., Bachinsky, D. R., Weremowicz, S., Vaglio, A., et al. (1999). Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 2919–2924.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ferencz, C., Boughman, J. A., Neill, C. A., Brenner, J. I., & Perry, L. W. (1989). Congenital cardiovascular malformations: questions on inheritance. Baltimore-Washington infant study group. Journal of the American College of Cardiology, 14(3), 756–763.

    Article  CAS  PubMed  Google Scholar 

  36. (2010). Heart development and regeneration set [Internet]. Amsterdam: Academic Press. Available from: http://www.sciencedirect.com/science/book/9780123813329.

  37. Martinsen, B., Lohr, J. L. (2009). Cardiac Development. In Handbook of Cardiac Anatomy, Physiology, and Devices.

  38. Bruneau, B. G. (2013). Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harbor Perspectives in Biology, 5(3), a008292.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Buckingham, M., Meilhac, S., & Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nature Reviews Genetics, 6(11), 826–835.

    Article  CAS  PubMed  Google Scholar 

  40. Brade, T., Pane, L. S., Moretti, A., Chien, K. R., & Laugwitz, K. L. (2013). Embryonic heart progenitors and cardiogenesis. Cold Spring Harbor Perspective Medicine, 3(10), a013847.

    Article  CAS  Google Scholar 

  41. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  42. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  43. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi, K., & Yamanaka, S. (2013). Induced pluripotent stem cells in medicine and biology. Development, 140(12), 2457–2461.

    Article  CAS  PubMed  Google Scholar 

  45. Matsa, E., Burridge, P. W., & Wu, J. C. (2014). Human stem cells for modeling heart disease and for drug discovery. Science Translational Medicine, 6(239), 239ps6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Burridge, P. W., Keller, G., Gold, J. D., & Wu, J. C. (2012). Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell, 10(1), 16–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Mummery, C. L., Zhang, J., Ng, E. S., Elliott, D. A., Elefanty, A. G., & Kamp, T. J. (2012). Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circulation Research, 111(3), 344–358.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., et al. (2014). Chemically defined generation of human cardiomyocytes. Nature Methods, 11(8), 855–860.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Graichen, R., Xu, X., Braam, S. R., Balakrishnan, T., Norfiza, S., Sieh, S., et al. (2008). Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 76(4), 357–370.

    Article  CAS  PubMed  Google Scholar 

  50. Jang, J., Ku, S. Y., Kim, J. E., Choi, K., Kim, Y. Y., Kim, H. S., et al. (2008). Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation. Stem Cells, 26 (11), 2782–2790.

  51. Yu, X., Zou, J., Ye, Z., Hammond, H., Chen, G., Tokunaga, A., et al. (2008). Notch signaling activation in human embryonic stem cells is required for embryonic, but not trophoblastic, lineage commitment. Cell Stem Cell, 2(5), 461–471.

  52. Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., et al. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell, 8(2), 228–240.

    Article  CAS  PubMed  Google Scholar 

  53. Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., et al. (2012). Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(27), E1848–E1857.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., et al. (2008). Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature, 453(7194), 524–528.

  55. Ema, M., Takahashi, S., & Rossant, J. (2006). Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood, 107(1), 111–117.

  56. Dunn, N. R., Vincent, S. D., Oxburgh, L., Robertson, E. J., & Bikoff, E. K. (2004). Combinatorial activities of Smad2 and Smad3 regulate mesoderm formation and patterning in the mouse embryo. Development, 131(8), 1717–1728.

  57. Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.

  58. Zhang, J., Klos, M., Wilson, G. F., Herman, A. M., Lian, X., Raval, K. K., et al. (2012). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circulation Research, 111(9), 1125–1136.

  59. Cai, W., Guzzo, R. M., Wei, K., Willems, E., & Mercola, M. (2012). A Nodal-to-TGFβ cascade exerts biphasic control over cardiopoiesis. Circluation Research, 111(7), 876–881.

  60. Tran, T. H., Wang, X., Browne, C., Zhang, Y., Schinke, M., Izumo, S., & Burcin, M. (2009). Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells, 27(8), 1869–1878.

  61. Paige, S. L., Osugi, T., Afanasiev, O. K., Pabon, L., Reinecke, H., & Murry, C. E. (2010). Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PloS One, 5(6), e11134.

  62. Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., & Gepstein, L. (2003). Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 285(6), H2355–H2363.

  63. Lundy, S. D., Zhu, W. Z., Regnier, M., & Laflamme, M. A. (2013). Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells and Development, 22(14), 1991–2002.

  64. Bedada, F. B., Chan, S. S., Metzger, S. K., Zhang, L., Zhang, J., Garry, D. J., et al. (2014). Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Reports, 3(4), 594–605.

  65. Willems, E., Spiering, S., Davidovics, H., Lanier, M., Xia, Z., Dawson, M., et al. (2011). Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circulation Research, 109(4), 360–364.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Hudson, J. E., & Zimmermann, W. H. (2011). Tuning Wnt-signaling to enhance cardiomyogenesis in human embryonic and induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 51(3), 277–279.

    Article  CAS  PubMed  Google Scholar 

  67. Ren, Y., Lee, M. Y., Schliffke, S., Paavola, J., Amos, P. J., Ge, X., et al. (2011). Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 51(3), 280–287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Karakikes, I., Senyei, G. D., Hansen, J., Kong, C. W., Azeloglu, E. U., Stillitano, F., et al. (2014). Small molecule-mediated directed differentiation of human embryonic stem cells toward ventricular cardiomyocytes. Stem Cells Translational Medicine, 3(1), 18–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Witty, A. D., Mihic, A., Tam, R. Y., Fisher, S. A., Mikryukov, A., Shoichet, M. S., et al. (2014). Generation of the epicardial lineage from human pluripotent stem cells. Nature Biotechnology, 32(10), 1026–1035.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Später, D., Abramczuk, M. K., Buac, K., Zangi, L., Stachel, M. W., Clarke, J., et al. (2013). A HCN4+ cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nature Cell Biology, 15(9), 1098–1106.

    Article  PubMed  CAS  Google Scholar 

  71. Elliott, D. A., Braam, S. R., Koutsis, K., Ng, E. S., Jenny, R., Lagerqvist, E. L., et al. (2011). NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods, 8(12), 1037–1040.

    Article  CAS  PubMed  Google Scholar 

  72. Bruneau, B. G., Nemer, G., Schmitt, J. P., Charron, F., Robitaille, L., Caron, S., et al. (2001). A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell, 106(6), 709–721.

    Article  CAS  PubMed  Google Scholar 

  73. Takeuchi, J. K., Ohgi, M., Koshiba-Takeuchi, K., Shiratori, H., Sakaki, I., Ogura, K., et al. (2003). Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development, 130(24), 5953–5964.

    Article  CAS  PubMed  Google Scholar 

  74. Liang, X., Wang, G., Lin, L., Lowe, J., Zhang, Q., Bu, L., et al. (2013). HCN4 dynamically marks the first heart field and conduction system precursors. Circulation Research, 113(4), 399–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Bu, L., Jiang, X., Martin-Puig, S., Caron, L., Zhu, S., Shao, Y., et al. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460(7251), 113–117.

    Article  CAS  PubMed  Google Scholar 

  76. Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127(6), 1151–1165.

    Article  CAS  PubMed  Google Scholar 

  77. Buikema, J. W., Zwetsloot, P. P., Doevendans, P. A., Sluijter, J. P., & Domian, I. J. (2013). Expanding mouse ventricular cardiomyocytes through GSK-3 inhibition. Current Protocols in Cell Biology, 61, 23.9.1–23.9.10.

    Article  Google Scholar 

  78. Cao, N., Liang, H., Huang, J., Wang, J., Chen, Y., Chen, Z., and Yang, H. T. (2013). Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Research, 23(9), 1119–1132.

  79. Lian, X., Bao, X., Al-Ahmad, A., Liu, J., Wu, Y., Dong, W., et al. (2014). Efficient differentiation of human pluripotent stem cells to endothelial progenitors via small-molecule activation of WNT signaling. Stem Cell Reports, 3(5), 804–816.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation Research, 93(1), 32–39.

    Article  CAS  PubMed  Google Scholar 

  81. Xu, C., Police, S., Rao, N., & Carpenter, M. K. (2002). Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research, 91(6), 501–508.

    Article  CAS  PubMed  Google Scholar 

  82. Tanwar, V., Bylund, J. B., Hu, J., Yan, J., Walthall, J. M., Mukherjee, A., et al. (2014). Gremlin 2 promotes differentiation of embryonic stem cells to atrial fate by activation of the JNK signaling pathway. Stem Cells, 32(7), 1774–1788.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Zhang, Q., Jiang, J., Han, P., Yuan, Q., Zhang, J., Zhang, X., et al. (2011). Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Research, 21(4), 579–587.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Caspi, O., Huber, I., Kehat, I., Habib, M., Arbel, G., Gepstein, A., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50(19), 1884–1893.

    Article  PubMed  Google Scholar 

  85. van Laake, L. W., Passier, R., Monshouwer-Kloots, J., Nederhoff, M. G., Ward-van Oostwaard, D., Field, L. J., et al. (2007). Monitoring of cell therapy and assessment of cardiac function using magnetic resonance imaging in a mouse model of myocardial infarction. Nature Protocols, 2(10), 2551–2567.

    Article  PubMed  CAS  Google Scholar 

  86. Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. The American Journal of Pathology, 167(3), 663–671.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Fernandes, S., Naumova, A. V., Zhu, W. Z., Laflamme, M. A., Gold, J., & Murry, C. E. (2010). Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. Journal of Molecular and Cellular Cardiology, 49(6), 941–949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Chong, J. J., Yang, X., Don, C. W., Minami, E., Liu, Y. W., Weyers, J. J., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 510(7504), 273–277.

  90. Yang, X., Pabon, L., & Murry, C. E. (2014). Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circulation Research, 114(3), 511–523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Kamakura, T., Makiyama, T., Sasaki, K., Yoshida, Y., Wuriyanghai, Y., Chen, J., et al. (2013). Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circulation Journal, 77(5), 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  92. Ivashchenko, C. Y., Pipes, G. C., Lozinskaya, I. M., Lin, Z., Xu, X., Needle, S., et al. (2013). Human induced pluripotent stem cell derived cardiomyocytes exhibit temporal changes in phenotype. American Journal Physiology Heart and Circulatory Physiology, 305(6), H913–922.

  93. Kobayashi, J., Yoshida, M., Tarui, S., Hirata, M., Nagai, Y., Kasahara, S., et al. (2014). Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PloS One, 9(7), e102796.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Jiang, Y., Habibollah, S., Tilgner, K., Collin, J., Barta, T., Al-Aama, J. Y., et al. (2014). An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes. Stem Cells Translational Medicine, 3(4), 416–423.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Letourneau, A., Santoni, F. A., Bonilla, X., Sailani, M. R., Gonzalez, D., Kind, J., et al. (2014). Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature, 508(7496), 345–350.

    Article  CAS  PubMed  Google Scholar 

  96. Bosman, A., Letourneau, A., Sartiani, L., Del Lungo, M., Ronzoni, F., Kuziakiv, R., et al. (2015). Perturbations of heart development and function in cardiomyocytes from hESC with trisomy 21. Stem Cells, 33(5), 1434–1446.

  97. Carvajal-Vergara, X., Sevilla, A., D’Souza, S. L., Ang, Y. S., Schaniel, C., Lee, D. F., et al. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature, 465(7299), 808–812.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Kinnear, C., Chang, W. Y., Khattak, S., Hinek, A., Thompson, T., de Carvalho Rodrigues, D., et al. (2013). Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Translational Medicine, 2(1), 2–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Ge, X., Ren, Y., Bartulos, O., Lee, M. Y., Yue, Z., Kim, K. Y., et al. (2012). Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation, 126(14), 1695–1704.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Sun, N., Yazawa, M., Liu, J., Han, L., Sanchez-Freire, V., Abilez, O. J., et al. (2012). Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Science Translational Medicine, 4(130), 130ra47.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Siu, C. W., Lee, Y. K., Ho, J. C., Lai, W. H., Chan, Y. C., Ng, K. M., et al. (2012). Modeling of lamin A/C mutation premature cardiac aging using patient‐specific induced pluripotent stem cells. Aging (Albany NY), 4(11), 803–822.

    CAS  Google Scholar 

  102. Tse, H. F., Ho, J. C., Choi, S. W., Lee, Y. K., Butler, A. W., Ng, K. M., et al. (2013). Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Human Molecular Genetics, 22(7), 1395–1403.

    Article  CAS  PubMed  Google Scholar 

  103. Lan, F., Lee, A. S., Liang, P., Sanchez-Freire, V., Nguyen, P. K., Wang, L., et al. (2013). Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell, 12(1), 101–113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Han, L., Li, Y., Tchao, J., Kaplan, A. D., Lin, B., Li, Y., et al. (2014). Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovascular Research, 104(2), 258–269.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Egashira, T., Yuasa, S., Suzuki, T., Aizawa, Y., Yamakawa, H., Matsuhashi, T., et al. (2012). Disease characterization using LQTS-specific induced pluripotent stem cells. Cardiovascular Research, 95(4), 419–429.

    Article  CAS  PubMed  Google Scholar 

  106. Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flügel, L., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363(15), 1397–1409.

    Article  CAS  PubMed  Google Scholar 

  107. Matsa, E., Rajamohan, D., Dick, E., Young, L., Mellor, I., Staniforth, A., & Denning, C. (2011). Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. European Heart Journal, 32(8), 952–962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229.

  109. Ma, D., Wei, H., Zhao, Y., Lu, J., Li, G., Sahib, N. B., et al. (2013). Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. International Journal of Cardiology, 168(6), 5277–5286.

    Article  PubMed  Google Scholar 

  110. Terrenoire, C., Wang, K., Tung, K. W., Chung, W. K., Pass, R. H., Lu, J. T., et al. (2013). Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. The Journal of General Physiology, 141(1), 61–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J. A., Hallmayer, J., & Dolmetsch, R. E. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–234.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Itzhaki, I., Maizels, L., Huber, I., Gepstein, A., Arbel, G., Caspi, O., et al. (2012). Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. Journal of the American College of Cardiology, 60(11):990–1000.

  113. Ma, D., Wei, H., Lu, J., Ho, S., Zhang, G., Sun, X., et al. (2013). Generation of patient-specific induced pluripotent stem cellderived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy. European Heart Journal, 34(15):1122–33.

  114. Kim, C., Wong, J., Wen, J., Wang, S., Wang, C., Spiering, S., et al. (2013). Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature, 494(7435), 105–110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Wang, G., McCain, M. L., Yang, L., He, A., Pasqualini, F. S., Agarwal, A., et al. (2014). Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 20(6), 616–623.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Huang, H. P., Chen, P. H., Hwu, W. L., Chuang, C. Y., Chien, Y. H., Stone, L., et al. (2011). Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification. Human Molecular Genetics, 20(24), 4851–4864.

    Article  CAS  PubMed  Google Scholar 

  117. Raval, K. K., Tao, R., White, B. E., De Lange, W. J., Koonce, C. H., Yu, J., et al. (2014) Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. The Journal of Biological Chemistry, 290(5), 3121-3136.

  118. Liu, J., Verma, P. J., Evans-Galea, M. V., Delatycki, M. B., Michalska, A., Leung, J., et al. (2011). Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Reviews, 7(3), 703–713.

    Article  CAS  PubMed  Google Scholar 

  119. Lee, Y. K., Ho, P. W., Schick, R., Lau, Y. M., Lai, W. H., Zhou, T., et al. (2014). Modeling of Friedreich ataxia-related iron overloading cardiomyopathy using patient-specific-induced pluripotent stem cells. Pflügers Archiv, 466(9), 1831–1844.

    Article  CAS  PubMed  Google Scholar 

  120. Hick, A., Wattenhofer-Donzé, M., Chintawar, S., Tropel, P., Simard, J. P., Vaucamps, N., et al. (2013). Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. Disease Models & Mechanisms, 6(3), 608–621.

    Article  CAS  Google Scholar 

  121. Sallam, K., Kodo, K., & Wu, J. C. (2014). Modeling inherited cardiac disorders. Circulation Journal, 78(4), 784–794.

    Article  CAS  PubMed  Google Scholar 

  122. Yazawa, M., & Dolmetsch, R. E. (2013). Modeling Timothy syndrome with iPS cells. Journal of Cardiovascular Translational Research, 6(1), 1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Matsa, E., Dixon, J. E., Medway, C., Georgiou, O., Patel, M. J., Morgan, K., et al. (2014). Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. European Heart Journal, 35(16), 1078–1087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Okata, S., Yuasa, S., Yamane, T., Furukawa, T., & Fukuda, K. (2013). The generation of induced pluripotent stem cells from a patient with KCNH2 G603D, without LQT2 disease associated symptom. Journal of Medical and Dental Sciences, 60(1), 17–22.

    PubMed  Google Scholar 

  125. Fatima, A., Kaifeng, S., Dittmann, S., Xu, G., Gupta, M. K., Linke, M., et al. (2013). The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients. PloS One, 8(12), e83005.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Mehta, A., Sequiera, G. L., Ramachandra, C. J., Sudibyo, Y., Chung, Y., Sheng, J., et al. (2014). Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes. Cardiovascular Research, 102(3), 497–506.

    Article  CAS  PubMed  Google Scholar 

  127. Bellin, M., Casini, S., Davis, R. P., D’Aniello, C., Haas, J., Ward-van Oostwaard, D., et al. (2013). Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. The EMBO Journal, 32(24), 3161–3175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Malan, D., Friedrichs, S., Fleischmann, B. K., & Sasse, P. (2011). Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circulation Research, 109(8), 841–847.

    Article  CAS  PubMed  Google Scholar 

  129. Eschenhagen, T., Mummery, C., & Knollmann, B. C. (2015). Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes. Cardiovascular Research, 105(4), 424–438.

    Article  PubMed Central  PubMed  Google Scholar 

  130. Josowitz, R., Carvajal-Vergara, X., Lemischka, I. R., & Gelb, B. D. (2011). Induced pluripotent stem cell-derived cardiomyocytes as models for genetic cardiovascular disorders. Current Opinion in Cardiology, 26(3), 223–229.

    Article  PubMed  Google Scholar 

  131. Gaber, N., Gagliardi, M., Patel, P., Kinnear, C., Zhang, C., Chitayat, D., et al. (2013). Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation. The American Journal of Pathology, 183(3), 720–734.

    Article  CAS  PubMed  Google Scholar 

  132. Schachterle, W., Rojas, A., Xu, S. M., & Black, B. L. (2012). ETS-dependent regulation of a distal Gata4 cardiac enhancer. Developmental Biology, 361(2), 439–449.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Majka, S. M., & McGuire, P. G. (1997). Regulation of urokinase expression in the developing avian heart: a role for the Ets-2 transcription factor. Mechanisms of Development, 68(1–2), 127–137.

    Article  CAS  PubMed  Google Scholar 

  134. Wamstad, J. A., Alexander, J. M., Truty, R. M., Shrikumar, A., Li, F., Eilertson, K. E., et al. (2012). Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell, 151(1), 206–220.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Paige, S. L., Thomas, S., Stoick-Cooper, C. L., Wang, H., Maves, L., Sandstrom, R., et al. (2012). A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell, 151(1), 221–232.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Zaidi, S., Choi, M., Wakimoto, H., Ma, L., Jiang, J., Overton, J. D., et al. (2013). De novo mutations in histone-modifying genes in congenital heart disease. Nature, 498(7453), 220–223.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Hiroi, Y., Kudoh, S., Monzen, K., Ikeda, Y., Yazaki, Y., Nagai, R., & Komuro, I. (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genetics, 28(3), 276–280.

    Article  CAS  PubMed  Google Scholar 

  138. Ghosh, T. K., Song, F. F., Packham, E. A., Buxton, S., Robinson, T. E., Ronksley, J., et al. (2009). Physical interaction between TBX5 and MEF2C is required for early heart development. Molecular and Cellular Biology, 29(8), 2205–2218.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Kathiresan, S., & Srivastava, D. (2012). Genetics of human cardiovascular disease. Cell, 148(6), 1242–1257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Bruneau, B. G. (2008). The developmental genetics of congenital heart disease. Nature, 451(7181), 943–948.

    Article  CAS  PubMed  Google Scholar 

  141. Garg, V., Kathiriya, I. S., Barnes, R., Schluterman, M. K., King, I. N., Butler, C. A., et al. (2003). GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature, 424(6947), 443–447.

    Article  CAS  PubMed  Google Scholar 

  142. Pu, W. T., Ishiwata, T., Juraszek, A. L., Ma, Q., & Izumo, S. (2004). GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Developmental Biology, 275(1), 235–244.

    Article  CAS  PubMed  Google Scholar 

  143. Rajagopal, S. K., Ma, Q., Obler, D., Shen, J., Manichaikul, A., Tomita-Mitchell, A., et al. (2007). Spectrum of heart disease associated with murine and human GATA4 mutation. Journal of Molecular and Cellular Cardiology, 43(6), 677–685.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Treutlein, B., Brownfield, D. G., Wu, A. R., Neff, N. F., Mantalas, G. L., Espinoza, F. H., et al. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature, 509(7500), 371–375.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. Neph, S., Stergachis, A. B., Reynolds, A., Sandstrom, R., Borenstein, E., & Stamatoyannopoulos, J. A. (2012). Circuitry and dynamics of human transcription factor regulatory networks. Cell, 150(6), 1274–1286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Gong, W., Koyano-Nakagawa, N., Li, T., Garry, D. J. (2015) Inferring dynamic gene regulatory networks in cardiac differentiation through the integration of multi-dimensional data. BMC Bioinformatics, 16(1), 74.

  147. Lim, J., & Thiery, J. P. (2012). Epithelial-mesenchymal transitions: insights from development. Development, 139(19), 3471–3486.

    Article  CAS  PubMed  Google Scholar 

  148. Garg, V., Muth, A. N., Ransom, J. F., Schluterman, M. K., Barnes, R., King, I. N., et al. (2005). Mutations in NOTCH1 cause aortic valve disease. Nature, 437(7056), 270–274.

    Article  CAS  PubMed  Google Scholar 

  149. Fischer, A., Steidl, C., Wagner, T. U., Lang, E., Jakob, P. M., Friedl, P., et al. (2007). Combined loss of Hey1 and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition. Circulation Research, 100(6), 856–863.

    Article  CAS  PubMed  Google Scholar 

  150. Greenway, S. C., Pereira, A. C., Lin, J. C., DePalma, S. R., Israel, S. J., Mesquita, S. M., et al. (2009). De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nature Genetics, 41(8), 931–935.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Ott, H. C., Matthiesen, T. S., Goh, S. K., Black, L. D., Kren, S. M., Netoff, T. I., & Taylor, D. A. (2008). Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221.

    Article  CAS  PubMed  Google Scholar 

  152. Lu, T. Y., Lin, B., Kim, J., Sullivan, M., Tobita, K., Salama, G., Yang, L. (2013). Repopulation of decellularized mouse heart with human induced pluripotent stem cell-derived cardiovascular progenitor cells. Nature Communications, 42307.

  153. Grosberg, A., Alford, P. W., McCain, M. L., & Parker, K. K. (2011). Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab on a Chip, 11(24), 4165–4173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Feinberg, A. W., Feigel, A., Shevkoplyas, S. S., Sheehy, S., Whitesides, G. M., & Parker, K. K. (2007). Muscular thin films for building actuators and powering devices. Science, 317(5843), 1366–1370.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Cynthia DeKay and Erik Munsen for assistance with the graphic illustrations. This work was supported by funding from the NHLBI (1R01HL122576) and NHLBI Progenitor Cell Biology Consortium (5U01HL100407).

Conflicts of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Garry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, M.J., Lohr, J.L., Chapman, C.S. et al. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as a Model for Heart Development and Congenital Heart Disease. Stem Cell Rev and Rep 11, 710–727 (2015). https://doi.org/10.1007/s12015-015-9596-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-015-9596-6

Keywords

Navigation