Tissue Engineering: New Tools for Old Problems

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920–926.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Nguyen, H. T., Geens, M., & Spits, C. (2013). Genetic and epigenetic instability in human pluripotent stem cells. Human Reproduction Update, 19(2), 187–205.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Zhao, T., Zhang, Z.-N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474(7350), 212–215.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Mayshar, Y., Ben-David, U., Lavon, N., et al. (2010). Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7(4), 521–531.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Tachibana, M., Amato, P., Sparman, M., et al. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153(6), 1228–1238.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. 7.

    Ma, H., Morey, R., O’Neil, R. C., et al. (2014). Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 511(7508), 177–183.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Hsu, P. D., Lander, E. S., & Zhang, F. (2014). Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157(6), 1262–1278.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. 9.

    Schwank, G., Koo, B. K., Sasselli, V., et al. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell, 13(6), 653–658.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone tissue engineering: state of the art and future trends. Macromolecular Bioscience, 4(8), 743–765.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Mano, J. F., Silva, G. A., Azevedo, H. S., et al. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the Royal Society Interface, 4(17), 999–1030.

    Article  PubMed Central  CAS  Google Scholar 

  12. 12.

    Van Vlierberghe, S., Dubruel, P., & Schacht, E. (2011). Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 12(5), 1387–1408.

    Article  PubMed  Google Scholar 

  13. 13.

    Uygun, B. E., Soto-Gutierrez, A., Yagi, H., et al. (2010). Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 16(7), 814–820.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. 14.

    Pirraco, R. P., Yamato, M., Akiyama, Y.et al (2012) Responsive Polymer Coatings for Smart Applications in Chromatography, Drug Delivery Systems, and Cell Sheet Engineering, In H. M. Grandin and M. Textor (Eds.), Intelligent Surfaces in Biotechnology: Scientific and Engineering Concepts, Enabling Technologies, and Translation to Bio-Oriented Applications. John Wiley & Sons, Inc., Hoboken, NJ, USA.

  15. 15.

    Kubo, H., Shioyama, T., Oura, M., et al. (2013). Development of automated 3-dimensional tissue fabrication system Tissue factory - Automated cell isolation from tissue for regenerative medicine. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2013, 358–361.

    CAS  Google Scholar 

  16. 16.

    Wystrychowski, W., McAllister, T. N., Zagalski, K., Dusserre, N., Cierpka, L., & L’heureux, N. (2013). First human use of an allogeneic tissue-engineered vascular graft for hemodialysis access. Journal of Vascular Surgery, 60(5), 1353–1357.

    Article  PubMed  Google Scholar 

  17. 17.

    Kosztin, I., Vunjak-Novakovic, G., & Forgacs, G. (2012). Colloquium: modeling the dynamics of multicellular systems: application to tissue engineering. Reviews of Modern Physics, 84(4), 1791–1805.

    Article  Google Scholar 

  18. 18.

    Forgacs, G. (2012). Tissue engineering: perfusable vascular networks. Nature Materials, 11(9), 746–747.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Schuurman, W., Khristov, V., Pot, M. W., van Weeren, P. R., Dhert, W. J. A., & Malda, J. (2011). Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication, 3(2), 021001.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Bertassoni, L. E., Cecconi, M., Manoharan, V., et al. (2014). Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 14(13), 2202–2211.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Chen, G.-Y., Pang, D. W.-P., Hwang, S.-M., Tuan, H.-Y., & Hu, Y.-C. (2012). A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 33(2), 418–427.

    Article  PubMed  Google Scholar 

  22. 22.

    Nayak, T. R., Andersen, H., Makam, V. S., et al. (2011). Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano, 5(6), 4670–4678.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Park, S. Y., Park, J., Sim, S. H., et al. (2011). Enhanced differentiation of human neural stem cells into neurons on graphene. Advanced Materials, 23(36), H263–H267.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Shah, S., Yin, P. T., Uehara, T. M., Chueng, S.-T. D., Yang, L., & Lee, K.-B. (2014). Graphene: guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Advanced Materials, 26(22), 3570.

  25. 25.

    Lee, T.-J., Park, S., Bhang, S. H., et al. (2014). Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications, 452(1), 174–180.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Lee, W. C., Lim, C. H., Kenry, Su, C., Loh, K. P., & Lim, C. T. (2015). Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small, 11(8), 963–969.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Zhou, R., & Gao, H. (2014). Cytotoxicity of graphene: recent advances and future perspective. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 6(5), 452–474.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

RL3-TECT-NORTE-01-0124-FEDER-000020, cofinanced by North Portugal Regional Operational Program (ON.2-O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund

Conflict of interest

The authors declare no potential conflicts of interest

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rogério P. Pirraco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pirraco, R.P., Reis, R.L. Tissue Engineering: New Tools for Old Problems. Stem Cell Rev and Rep 11, 373–375 (2015). https://doi.org/10.1007/s12015-015-9593-9

Download citation

Keywords

  • Tissue Engineering
  • Stem cells
  • Scaffold-free
  • Biomaterials
  • Gene editing
  • Graphene