Skip to main content

Advertisement

Log in

Pluripotent Stem Cells for Schwann Cell Engineering

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitulating the various stages of in vivo neural crest formation and SC differentiation. In this review, we survey the cellular and molecular mechanisms underlying these in vivo processes. We then focus on the current in vitro strategies for generating SCs from two sources of pluripotent stem cells, namely embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Different methods for SC engineering from ESCs and iPSCs are reviewed and suggestions are proposed for optimizing the existing protocols. Potential safety issues regarding the clinical application of iPSC-derived SCs are discussed as well. Lastly, we will address future aspects of SC engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jessen, K. R., & Mirsky, R. (2005). The origin and development of glial cells in peripheral nerves. Nature Reviews Neuroscience, 6, 671–682.

    Article  CAS  PubMed  Google Scholar 

  2. Kamholz, J., Menichella, D., Jani, A., et al. (2000). Charcot-Marie-Tooth disease type 1: molecular pathogenesis to gene therapy. Brain, 123(Pt 2), 222–233.

    Article  PubMed  Google Scholar 

  3. Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes and Development, 24, 2239–2263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Eser, F., Bodur, H., & Atan, Ç. (2009). Etiological factors of traumatic peripheral nerve injuries. Neurology India, 57(4), 434–437.

    Article  PubMed  Google Scholar 

  5. Novak, C. B., Anastakis, D. J., Beaton, D. E., Mackinnon, S. E., & Katz, J. (2011). Biomedical and psychosocial factors associated with disability after peripheral nerve injury. Journal of Bone and Joint Surgery, 93(10), 929–936.

    Article  PubMed  Google Scholar 

  6. Fawcett, J., & Keynes, R. J. (1990). Peripheral nerve regeneration. Annual Review of Neuroscience, 13, 43–60.

    Article  CAS  PubMed  Google Scholar 

  7. Terenghi, G. (1999). Peripheral nerve regeneration and neurotrophic factors. Journal of Anatomy, 194(Pt 1), 1–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Frostick, S. P., Yin, Q., & Kemp, G. J. (1998). Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery, 18(7), 397–405.

    Article  CAS  PubMed  Google Scholar 

  9. Jessen, K., & Mirsky, R. (2002). Signals that determine Schwann cell identity. Journal of Anatomy, 200(4), 367–376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hadlock, T., Elisseeff, J., Langer, R., Vacanti, J., & Cheney, M. (1998). A tissue-engineered conduit for peripheral nerve repair. Archives of Otolaryngology Head and Neck Surgery, 124(10), 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  11. Fansa, H., Keilhoff, G., Wolf, G., & Schneider, W. (2001). Tissue engineering of peripheral nerves: a comparison of venous and acellular muscle grafts with cultured Schwann cells. Plastic and Reconstructive Surgery, 107(2), 485–494. discussion 495–6.

    Article  CAS  PubMed  Google Scholar 

  12. Frerichs, O., Fansa, H., Schicht, C., Wolf, G., Schneider, W., & Keilhoff, G. (2002). Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells. Microsurgery, 22(7), 311–315.

    Article  PubMed  Google Scholar 

  13. Rodríguez, F. J., Verdú, E., Ceballos, D., & Navarro, X. (2000). Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Experimental Neurology, 161(2), 571–584.

    Article  PubMed  Google Scholar 

  14. Schlosshauer, B., Müller, E., Schröder, B., Planck, H., & Müller, H. (2003). Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration. Brain Research, 963(1), 321–326.

    Article  CAS  PubMed  Google Scholar 

  15. Evans, G. R., Brandt, K., Katz, S., et al. (2002). Bioactive poly (L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials, 23(3), 841–848.

    Article  CAS  PubMed  Google Scholar 

  16. Fansa, H., & Keilhoff, G. (2004). Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects. Neurological Research, 26(2), 167–173.

    Article  CAS  PubMed  Google Scholar 

  17. Keirstead, H. S., Nistor, G., Bernal, G., et al. (2005). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. Journal of Neuroscience, 25(19), 4694–4705.

    Article  CAS  PubMed  Google Scholar 

  18. Totoiu, M. O., Nistor, G. I., Lane, T. E., & Keirstead, H. S. (2004). Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Experimental Neurology, 187(2), 254–265.

    Article  CAS  PubMed  Google Scholar 

  19. Blakemore, W. (1977). Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature, 266, 68–69.

    Article  CAS  PubMed  Google Scholar 

  20. Duncan, I., Aguayo, A., Bunge, R., & Wood, P. (1981). Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. Journal of Neurological Sciences, 49(2), 241–252.

    Article  CAS  Google Scholar 

  21. Itoyama, Y., Webster, H. D., Richardson, E. P., & Trapp, B. D. (1983). Schwann cell remyelination of demyelinated axons in spinal cord multiple sclerosis lesions. Annals of Neurology, 14(3), 339–346.

    Article  CAS  PubMed  Google Scholar 

  22. Baron-Van Evercooren, A., Gansmuller, A., Duhamel, E., Pascal, F., & Gumpel, M. (1992). Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. Journal of Neuroimmunology, 40(2), 235–242.

    Article  CAS  PubMed  Google Scholar 

  23. Blakemore, W., Olby, N., & Franklin, R. (1995). The use of transplanted glial cells to reconstruct glial environments in the CNS. Brain Pathology, 5(4), 443–450.

    Article  CAS  PubMed  Google Scholar 

  24. Honmou, O., Felts, P. A., Waxman, S. G., & Kocsis, J. D. (1996). Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. Journal of Neuroscience, 16(10), 3199–3208.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Iwashita, Y., Fawcett, J. W., Crang, A., Franklin, R. J., & Blakemore, W. F. (2000). Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival. Experimental Neurology, 164(2), 292–302.

    Article  CAS  PubMed  Google Scholar 

  26. Dezawa, M., Takahashi, I., Esaki, M., Takano, M., & Sawada, H. (2001). Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. European Journal of Neuroscience, 14(11), 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu, S., Kitada, M., Ishikawa, H., Itokazu, Y., Wakao, S., & Dezawa, M. (2007). Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Biochemical and Biophysical Research Communications, 359(4), 915–920.

    Article  CAS  PubMed  Google Scholar 

  28. Wakao, S., Hayashi, T., Kitada, M., et al. (2010). Long-term observation of auto-cell transplantation in non-human primate reveals safety and efficiency of bone marrow stromal cell-derived Schwann cells in peripheral nerve regeneration. Experimental Neurology, 223(2), 537–547.

    Article  CAS  PubMed  Google Scholar 

  29. Mimura, T., Dezawa, M., Kanno, H., Sawada, H., & Yamamoto, I. (2004). Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. Journal of Neurosurgery, 101(5), 806–812.

    Article  PubMed  Google Scholar 

  30. Tohill, M., Mantovani, C., Wiberg, M., & Terenghi, G. (2004). Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neuroscience Letters, 362(3), 200–203.

    Article  CAS  PubMed  Google Scholar 

  31. Tohill, M. P., Mann, D. J., Mantovani, C. M., Wiberg, M., & Terenghi, G. (2004). Green fluorescent protein is a stable morphological marker for Schwann cell transplants in bioengineered nerve conduits. Tissue Engineering, 10(9–10), 1359–1367.

    Article  CAS  PubMed  Google Scholar 

  32. Caddick, J., Kingham, P. J., Gardiner, N. J., Wiberg, M., & Terenghi, G. (2006). Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia, 54(8), 840–849.

    Article  PubMed  Google Scholar 

  33. Brohlin, M., Mahay, D., Novikov, L. N., et al. (2009). Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neuroscience Research, 64(1), 41–49.

    Article  PubMed  Google Scholar 

  34. Kingham, P. J., Kalbermatten, D. F., Mahay, D., Armstrong, S. J., Wiberg, M., & Terenghi, G. (2007). Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Experimental Neurology, 207(2), 267–274.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, Y., Liu, L., Li, Y., et al. (2008). Myelin-forming ability of Schwann cell-like cells induced from rat adipose-derived stem cells in vitro. Brain Research, 1239, 49–55.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, L., Zhu, J. K., Liu, X. L., Xiang, P., Hu, J., & Yu, W. H. (2008). Differentiation of rat adipose tissue-derived stem cells into Schwann-like cells in vitro. Neuroreport, 19(10), 1015–1019.

    Article  PubMed  Google Scholar 

  37. Radtke, C., Schmitz, B., Spies, M., Kocsis, J., & Vogt, P. (2009). Peripheral glial cell differentiation from neurospheres derived from adipose mesenchymal stem cells. International Journal of Developmental Neuroscience, 27(8), 817–823.

    Article  CAS  PubMed  Google Scholar 

  38. Chi, G. F., Kim, M., Kim, D., Jiang, M. H., & Son, Y. (2010). Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Experimental Neurology, 222(2), 304–317.

    Article  CAS  PubMed  Google Scholar 

  39. Fernandes, K. J., McKenzie, I. A., Mill, P., et al. (2004). A dermal niche for multipotent adult skin-derived precursor cells. Nature Cell Biology, 6(11), 1082–1093.

    Article  CAS  PubMed  Google Scholar 

  40. Toma, J. G., McKenzie, I. A., Bagli, D., & Miller, F. D. (2005). Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells, 23(6), 727–737.

    Article  CAS  PubMed  Google Scholar 

  41. McKenzie, I. A., Biernaskie, J., Toma, J. G., Midha, R., & Miller, F. D. (2006). Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. Journal of Neuroscience, 26(24), 6651–6660.

    Article  CAS  PubMed  Google Scholar 

  42. Sieber-Blum, M., Grim, M., Hu, Y., & Szeder, V. (2004). Pluripotent neural crest stem cells in the adult hair follicle. Developmental Dynamics, 231(2), 258–269.

    Article  CAS  PubMed  Google Scholar 

  43. Amoh, Y., Li, L., Katsuoka, K., Penman, S., & Hoffman, R. M. (2005). Multipotent nestin-positive, keratin-negative hair-follicle bulge stem cells can form neurons. Proceedings of the National academy of Sciences of the United States of America, 102(15), 5530–5534.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Krause, M. P., Dworski, S., Feinberg, K., et al. (2014). Direct genesis of functional rodent and human Schwann cells from skin mesenchymal precursors. Stem Cell Reports, 3(1), 85–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Amoh, Y., Li, L., Katsuoka, K., & Hoffman, R. M. (2009). Multipotent nestin-expressing hair follicle stem cells. Journal of Dermatology, 36(1), 1–9.

    Article  PubMed  Google Scholar 

  46. Biernaskie, J. A., McKenzie, I. A., Toma, J. G., & Miller, F. D. (2007). Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nature Protocols, 1(6), 2803–2812.

    Article  CAS  Google Scholar 

  47. Biernaskie, J., Sparling, J. S., Liu, J., et al. (2007). Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. Journal of Neuroscience, 27(36), 9545–9559.

    Article  CAS  PubMed  Google Scholar 

  48. Heine, W., Conant, K., Griffin, J. W., & Höke, A. (2004). Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Experimental Neurology, 189(2), 231–240.

    Article  CAS  PubMed  Google Scholar 

  49. Murakami, T., Fujimoto, Y., Yasunaga, Y., et al. (2003). Transplanted neuronal progenitor cells in a peripheral nerve gap promote nerve repair. Brain Research, 974(1), 17–24.

    Article  CAS  PubMed  Google Scholar 

  50. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  CAS  PubMed  Google Scholar 

  51. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638.

    Article  CAS  Google Scholar 

  52. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine, 6(2), 88–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Biswas, A., & Hutchins, R. (2007). Embryonic stem cells. Stem Cells and Development, 16(2), 213–222.

    Article  CAS  PubMed  Google Scholar 

  54. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  57. Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.

    Article  CAS  PubMed  Google Scholar 

  58. Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448(7151), 313–317.

    Article  CAS  PubMed  Google Scholar 

  59. Wernig, M., Zhao, J., Pruszak, J., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences, 105(15), 5856–5861.

    Article  CAS  Google Scholar 

  60. Hanna, J., Wernig, M., Markoulaki, S., et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 318(5858), 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  61. Du, Z., & Zhang, S. (2004). Neural differentiation from embryonic stem cells: which way? Stem Cells and Development, 13(4), 372–381.

    Article  PubMed  Google Scholar 

  62. Villanueva, S., Glavic, A., Ruiz, P., & Mayor, R. (2002). Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Developmental Biology, 241(2), 289–301.

    Article  CAS  PubMed  Google Scholar 

  63. Sauka-Spengler, T., & Bronner-Fraser, M. (2008). A gene regulatory network orchestrates neural crest formation. Nature Reviews Molecular Cell Biology, 9(7), 557–568.

    Article  CAS  PubMed  Google Scholar 

  64. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 119(6), 1420–1428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Bronner, M. E., & LeDouarin, N. M. (2012). Development and evolution of the neural crest: an overview. Developmental Biology, 366(1), 2–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2(6), 442–454.

    Article  CAS  PubMed  Google Scholar 

  67. Peinado, H., Portillo, F., & Cano, A. (2004). Transcriptional regulation of cadherins during development and carcinogenesis. International Journal of Developmental Biology, 48(5–6), 365–375.

    Article  CAS  PubMed  Google Scholar 

  68. Batlle, E., Sancho, E., Francí, C., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2(2), 84–89.

    Article  CAS  PubMed  Google Scholar 

  69. Cano, A., Pérez-Moreno, M. A., Rodrigo, I., et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.

    Article  CAS  PubMed  Google Scholar 

  70. Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62(6), 1613–1618.

    CAS  PubMed  Google Scholar 

  71. Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nature Reviews Molecular Cell Biology, 3(3), 155–166.

    Article  CAS  PubMed  Google Scholar 

  72. De Craene, B., Gilbert, B., Stove, C., Bruyneel, E., van Roy, F., & Berx, G. (2005). The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Research, 65(14), 6237–6244.

    Article  PubMed  Google Scholar 

  73. Balzac, F., Avolio, M., Degani, S., et al. (2005). E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. Journal of Cell Science, 118(20), 4765–4783.

    Article  CAS  PubMed  Google Scholar 

  74. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7(2), 131–142.

    Article  CAS  PubMed  Google Scholar 

  75. Kalcheim, C., & Burstyn-Cohen, T. (2005). Early stages of neural crest ontogeny: formation and regulation of cell delamination. International Journal of Developmental Biology, 49(2–3), 105–116.

    Article  CAS  PubMed  Google Scholar 

  76. Jessen, K. R., & Mirsky, R. (2005). The origin and development of glial cells in peripheral nerves. Nature Reviews Neuroscience, 6(9), 671–682.

    Article  CAS  PubMed  Google Scholar 

  77. Mirsky, R., Woodhoo, A., Parkinson, D. B., Arthur‐Farraj, P., Bhaskaran, A., & Jessen, K. R. (2008). Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. Journal of the Peripheral Nervous System, 13(2), 122–135.

    Article  PubMed  Google Scholar 

  78. Pereira, J. A., Lebrun-Julien, F., & Suter, U. (2012). Molecular mechanisms regulating myelination in the peripheral nervous system. Trends in Neurosciences, 35(2), 123–134.

    Article  CAS  PubMed  Google Scholar 

  79. Stolt, C. C., & Wegner, M. (2010). SoxE function in vertebrate nervous system development. International Journal of Biochemistry and Cell Biology, 42(3), 437–440.

    Article  CAS  PubMed  Google Scholar 

  80. Britsch, S., Goerich, D. E., Riethmacher, D., et al. (2001). The transcription factor Sox10 is a key regulator of peripheral glial development. Genes and Development, 15(1), 66–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Schreiner, S., Cossais, F., Fischer, K., et al. (2007). Hypomorphic Sox10 alleles reveal novel protein functions and unravel developmental differences in glial lineages. Development, 134(18), 3271–3281.

    Article  CAS  PubMed  Google Scholar 

  82. Inoue, K., Khajavi, M., Ohyama, T., et al. (2004). Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nature Genetics, 36(4), 361–369.

    Article  CAS  PubMed  Google Scholar 

  83. Finzsch, M., Schreiner, S., Kichko, T., et al. (2010). Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. Journal of Cell Biology, 189(4), 701–712.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Topilko, P., Schneider-Maunoury, S., Levi, G., et al. (1994). Krox-20 controls myelination in the peripheral nervous system. Nature, 371, 396–399.

    Article  Google Scholar 

  85. Nagarajan, R., Svaren, J., Le, N., Araki, T., Watson, M., & Milbrandt, J. (2001). EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron, 30(2), 355–368.

    Article  CAS  PubMed  Google Scholar 

  86. Ghislain, J., & Charnay, P. (2006). Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Reports, 7(1), 52–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Warner, L. E., Mancias, P., Butler, I. J., et al. (1998). Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nature Genetics, 18(4), 382–384.

    Article  CAS  PubMed  Google Scholar 

  88. Timmerman, V., De Jonghe, P., Ceuterick, C., et al. (1999). Novel missense mutation in the early growth response 2 gene associated with Dejerine-Sottas syndrome phenotype. Neurology, 52(9), 1827–1832.

    Article  CAS  PubMed  Google Scholar 

  89. Boerkoel, C. F., Takashima, H., Bacino, C. A., Daentl, D., & Lupski, J. R. (2001). EGR2 mutation R359W causes a spectrum of Dejerine-Sottas neuropathy. Neurogenetics, 3(3), 153–157.

    Article  CAS  PubMed  Google Scholar 

  90. Jaegle, M., Ghazvini, M., Mandemakers, W., et al. (2003). The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes and Development, 17(11), 1380–1391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Ghislain, J., Desmarquet-Trin-Dinh, C., Jaegle, M., Meijer, D., Charnay, P., & Frain, M. (2002). Characterisation of cis-acting sequences reveals a biphasic, axon-dependent regulation of Krox20 during Schwann cell development. Development, 129(1), 155–166.

    CAS  PubMed  Google Scholar 

  92. Kao, S. C., Wu, H., Xie, J., et al. (2009). Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science, 323(5914), 651–654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Jagalur, N. B., Ghazvini, M., Mandemakers, W., et al. (2011). Functional dissection of the Oct6 Schwann cell enhancer reveals an essential role for dimeric Sox10 binding. Journal of Neuroscience, 31(23), 8585–8594.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Zorick, T. S., Syroid, D. E., Brown, A., Gridley, T., & Lemke, G. (1999). Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development, 126(7), 1397–1406.

    CAS  PubMed  Google Scholar 

  95. Peirano, R. I., & Wegner, M. (2000). The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences. Nucleic Acids Research, 28(16), 3047–3055.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Slutsky, S. G., Kamaraju, A. K., Levy, A. M., Chebath, J., & Revel, M. (2003). Activation of myelin genes during transdifferentiation from melanoma to glial cell phenotype. Journal of Biological Chemistry, 278(11), 8960–8968.

    Article  CAS  PubMed  Google Scholar 

  97. Bondurand, N., Girard, M., Pingault, V., Lemort, N., Dubourg, O., & Goossens, M. (2001). Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Human Molecular Genetics, 10(24), 2783–2795.

    Article  CAS  PubMed  Google Scholar 

  98. Meyer, D., Yamaai, T., Garratt, A., et al. (1997). Isoform-specific expression and function of neuregulin. Development, 124(18), 3575–3586.

    CAS  PubMed  Google Scholar 

  99. Marchionni, M. A., Goodearl, A. D., Chen, M. S., et al. (1993). Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature, 362, 312–318.

    Article  CAS  PubMed  Google Scholar 

  100. Shah, N. M., Marchionni, M. A., Isaacs, I., Stroobant, P., & Anderson, D. J. (1994). Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell, 77(3), 349–360.

    Article  CAS  PubMed  Google Scholar 

  101. Dong, Z., Brennan, A., Liu, N., et al. (1995). Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron, 15(3), 585–596.

    Article  CAS  PubMed  Google Scholar 

  102. Jessen, K., & Mirsky, R. (1997). Embryonic Schwann cell development: the biology of Schwann cell precursors and early Schwann cells. Journal of Anatomy, 191(4), 501–505.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Nave, K., & Salzer, J. L. (2006). Axonal regulation of myelination by neuregulin 1. Current Opinion in Neurobiology, 16(5), 492–500.

    Article  CAS  PubMed  Google Scholar 

  104. Monje, P. V., Bartlett Bunge, M., & Wood, P. M. (2006). Cyclic AMP synergistically enhances neuregulin-dependent ERK and Akt activation and cell cycle progression in Schwann cells. Glia, 53(6), 649–659.

    Article  PubMed  Google Scholar 

  105. Limpert, A. S., & Carter, B. D. (2010). Axonal neuregulin 1 type III activates NF-kappaB in Schwann cells during myelin formation. Journal of Biological Chemistry, 285(22), 16614–16622.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Nickols, J. C., Valentine, W., Kanwal, S., & Carter, B. D. (2003). Activation of the transcription factor NF-κB in Schwann cells is required for peripheral myelin formation. Nature Neuroscience, 6(2), 161–167.

    Article  CAS  PubMed  Google Scholar 

  107. Arthur‐Farraj, P., Wanek, K., Hantke, J., et al. (2011). Mouse schwann cells need both NRG1 and cyclic AMP to myelinate. Glia, 59(5), 720–733.

    Article  PubMed  Google Scholar 

  108. Svaren, J., & Meijer, D. (2008). The molecular machinery of myelin gene transcription in Schwann cells. Glia, 56(14), 1541–1551.

    Article  PubMed Central  PubMed  Google Scholar 

  109. Fregien, N. L., White, L. A., Bunge, M. B., & Wood, P. M. (2005). Forskolin increases neuregulin receptors in human Schwann cells without increasing receptor mRNA. Glia, 49(1), 24–35.

    Article  PubMed  Google Scholar 

  110. Sheean, M. E., McShane, E., Cheret, C., et al. (2014). Activation of MAPK overrides the termination of myelin growth and replaces Nrg1/ErbB3 signals during Schwann cell development and myelination. Genes and Development, 28(3), 290–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Cornbrooks, C. J., Carey, D. J., McDonald, J. A., Timpl, R., & Bunge, R. P. (1983). In vivo and in vitro observations on laminin production by Schwann cells. Proceedings of the National academy of Sciences of the United States of America, 80(12), 3850–3854.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Patton, B. L., Miner, J. H., Chiu, A. Y., & Sanes, J. R. (1997). Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. Journal of Cell Biology, 139(6), 1507–1521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Chen, Z., Yu, W., & Strickland, S. (2007). Peripheral regeneration. Annual Review of Neuroscience, 30, 209–233.

    Article  PubMed  CAS  Google Scholar 

  114. Yu, W. M., Feltri, M. L., Wrabetz, L., Strickland, S., & Chen, Z. L. (2005). Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. Journal of Neuroscience, 25(18), 4463–4472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Hossain, S., de la Cruz‐Morcillo, M., Sanchez‐Prieto, R., & Almazan, G. (2012). Mitogen-activated protein kinase p38 regulates krox-20 to direct schwann cell differentiation and peripheral myelination. Glia, 60(7), 1130–1144.

    Article  PubMed  Google Scholar 

  116. Erceg, S., Ronaghi, M., & Stojković, M. (2009). Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells, 27(1), 78–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Denham, M., & Dottori, M. (2009). Signals involved in neural differentiation of human embryonic stem cells. Neurosignals, 17(4), 234–241.

    Article  CAS  PubMed  Google Scholar 

  118. Lee, G., Kim, H., Elkabetz, Y., et al. (2007). Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Natural Biotechnology, 25(12).

  119. Monsoro-Burq, A. H., Fletcher, R. B., & Harland, R. M. (2003). Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development, 130(14), 3111–3124.

    Article  CAS  PubMed  Google Scholar 

  120. Kawaguchi, J., Nichols, J., Gierl, M. S., Faial, T., & Smith, A. (2010). Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development, 137(5), 693–704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E., & Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell, 3(5), 508–518.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  122. Jessell, T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Reviews Genetics, 1(1), 20–29.

    Article  CAS  PubMed  Google Scholar 

  123. Mizuseki, K., Sakamoto, T., Watanabe, K., et al. (2003). Generation of neural crest-derived peripheral neurons and floor plate cells from mouse and primate embryonic stem cells. Proceedings of the National academy of Sciences of the United States of America, 100(10), 5828–5833.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Okawa, T., Kamiya, H., Himeno, T., et al. (2013). Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplantation, 22(10), 1767–1783.

    Article  PubMed  Google Scholar 

  125. Haastert, K., Mauritz, C., Chaturvedi, S., & Grothe, C. (2007). Human and rat adult Schwann cell cultures: fast and efficient enrichment and highly effective non-viral transfection protocol. Nature Protocols, 2(1), 99–104.

    Article  CAS  PubMed  Google Scholar 

  126. Kalcheim, C., & Gendreau, M. (1988). Brain-derived neurotrophic factor stimulates survival and neuronal differentiation in cultured avian neural crest. Developmental Brain Research, 41(1), 79–86.

    Article  Google Scholar 

  127. Yu, D., Lee, K., Lee, J., et al. (2004). Changes of gene expression profiles during neuronal differentiation of central nervous system precursors treated with ascorbic acid. Journal of Neuroscience Research, 78(1), 29–37.

    Article  CAS  PubMed  Google Scholar 

  128. Eldridge, C. F., Bunge, M. B., Bunge, R. P., & Wood, P. M. (1987). Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. Journal of Cell Biology, 105(2), 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  129. Pomp, O., Brokhman, I., Ben-Dor, I., Reubinoff, B., & Goldstein, R. S. (2005). Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells, 23(7), 923–930.

    Article  CAS  PubMed  Google Scholar 

  130. Motohashi, T., Aoki, H., Chiba, K., Yoshimura, N., & Kunisada, T. (2007). Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells, 25(2), 402–410.

    Article  CAS  PubMed  Google Scholar 

  131. Rathjen, J., Haines, B. P., Hudson, K. M., Nesci, A., Dunn, S., & Rathjen, P. D. (2002). Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neurectoderm population. Development, 129(11), 2649–2661.

    CAS  PubMed  Google Scholar 

  132. Zhou, Y., & Snead, M. L. (2008). Derivation of cranial neural crest-like cells from human embryonic stem cells. Biochemical and Biophysical Research Communications, 376(3), 542–547.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Jiang, X., Gwye, Y., McKeown, S. J., Bronner-Fraser, M., Lutzko, C., & Lawlor, E. R. (2009). Isolation and characterization of neural crest stem cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells and Development, 18(7), 1059–1070.

    Article  CAS  PubMed  Google Scholar 

  134. Lee, G., Chambers, S. M., Tomishima, M. J., & Studer, L. (2010). Derivation of neural crest cells from human pluripotent stem cells. Nature Protocols, 5(4), 688–701.

    Article  CAS  PubMed  Google Scholar 

  135. Ziegler, L., Grigoryan, S., Yang, I. H., Thakor, N. V., & Goldstein, R. S. (2011). Efficient generation of Schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Reviews and Reports, 7(2), 394–403.

    Article  PubMed  Google Scholar 

  136. Cui, L., Jiang, J., Wei, L., et al. (2008). Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells, 26(5), 1356–1365.

    Article  CAS  PubMed  Google Scholar 

  137. Chin, M. H., Mason, M. J., Xie, W., et al. (2009). Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell, 5(1), 111–123.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Doi, A., Park, I., Wen, B., et al. (2009). Differential methylation of tissue-and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics, 41(12), 1350–1353.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Liu, Q., Spusta, S. C., Mi, R., et al. (2012). Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Translational Medicine, 1(4), 266–278.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Menendez, L., Kulik, M. J., Page, A. T., et al. (2013). Directed differentiation of human pluripotent cells to neural crest stem cells. Nature Protocols, 8(1), 203–212.

    Article  CAS  PubMed  Google Scholar 

  141. Wang, A., Tang, Z., Park, I., et al. (2011). Induced pluripotent stem cells for neural tissue engineering. Biomaterials, 32(22), 5023–5032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Uemura, T., Takamatsu, K., Ikeda, M., et al. (2012). Transplantation of induced pluripotent stem cell-derived neurospheres for peripheral nerve repair. Biochemical and Biophysical Research Communications, 419(1), 130–135.

    Article  CAS  PubMed  Google Scholar 

  143. Ikeda, M., Uemura, T., Takamatsu, K., et al. (2013). Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. Journal of Biomedical Materials Research Part A.

  144. Pomp, O., Brokhman, I., Ziegler, L., et al. (2008). PA6-induced human embryonic stem cell-derived neurospheres: a new source of human peripheral sensory neurons and neural crest cells. Brain Research, 1230, 50–60.

    Article  CAS  PubMed  Google Scholar 

  145. Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  146. Melino, G. (2011). p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death and Differentiation, 18(9), 1487–1499.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Koyanagi, M., Takahashi, J., Arakawa, Y., et al. (2008). Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. Journal of Neuroscience Research, 86(2), 270–280.

    Article  CAS  PubMed  Google Scholar 

  148. Huangfu, D., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  149. Wernig, M., Meissner, A., Foreman, R., et al. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 448(7151), 318–324.

    Article  CAS  PubMed  Google Scholar 

  150. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K. (2008). Induced pluripotent stem cells generated without viral integration. Science, 322(5903), 945–949.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., & Yamanaka, S. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.

    Article  CAS  PubMed  Google Scholar 

  152. Zhou, H., Wu, S., Joo, J. Y., et al. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell, 4(5), 381–384.

    Article  CAS  PubMed  Google Scholar 

  153. Kim, D., Kim, C., Moon, J., et al. (2009). Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4(6), 472.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Warren, L., Manos, P. D., Ahfeldt, T., et al. (2010). Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7(5), 618–630.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Desponts, C., Ding, S. (2010). Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Cellular Programming and Reprogramming, 207–218.

  156. Woltjen, K., Michael, I. P., Mohseni, P., et al. (2009). PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P., & Woltjen, K. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Jia, F., Wilson, K. D., Sun, N., et al. (2010). A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7(3), 197–199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Chou, B., Mali, P., Huang, X., et al. (2011). Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 21(3), 518–529.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Ban, H., Nishishita, N., Fusaki, N., et al. (2011). Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences, 108(34), 14234–14239.

    Article  CAS  Google Scholar 

  162. Li, J., Christophersen, N. S., Hall, V., Soulet, D., & Brundin, P. (2008). Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends in Neurosciences, 31(3), 146–153.

    Article  PubMed  CAS  Google Scholar 

  163. Yamanaka, S., Tanabe, K. (2009). Method for producing induced pluripotent stem cells, US Patent App. 13/059,188.

  164. Kawasaki, H., Mizuseki, K., Nishikawa, S., et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell–derived inducing activity. Neuron, 28(1), 31–40.

    Article  CAS  PubMed  Google Scholar 

  165. Chambers, S. M., Qi, Y., Mica, Y., et al. (2012). Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nature Biotechnology, 30(7), 715–720.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  166. Kreitzer, F. R., Salomonis, N., Sheehan, A., et al. (2013). A robust method to derive functional neural crest cells from human pluripotent stem cells. American Journal of Stem Cells, 2(2), 119.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Südhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035–1041.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Yang, N., Zuchero, J. B., Ahlenius, H., et al. (2013). Generation of oligodendroglial cells by direct lineage conversion. Nature Biotechnology, 31(5), 434–439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Najm, F. J., Lager, A. M., Zaremba, A., et al. (2013). Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nature Biotechnology, 31(5), 426–433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Parkinson, D. B., Bhaskaran, A., Droggiti, A., et al. (2004). Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. Journal of Cell Biology, 164(3), 385–394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Ryu, E. J., Wang, J. Y., Le, N., et al. (2007). Misexpression of Pou3f1 results in peripheral nerve hypomyelination and axonal loss. Journal of Neuroscience, 27(43), 11552–11559.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no potential conflict of interests

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjef Copray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, MS., Boddeke, E. & Copray, S. Pluripotent Stem Cells for Schwann Cell Engineering. Stem Cell Rev and Rep 11, 205–218 (2015). https://doi.org/10.1007/s12015-014-9577-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9577-1

Keywords

Navigation