Stem Cell Reviews and Reports

, Volume 11, Issue 3, pp 511–525 | Cite as

Human Vascular Tissue Models Formed from Human Induced Pluripotent Stem Cell Derived Endothelial Cells

  • David G. Belair
  • Jordan A. Whisler
  • Jorge Valdez
  • Jeremy Velazquez
  • James A. Molenda
  • Vernella Vickerman
  • Rachel Lewis
  • Christine Daigh
  • Tyler D. Hansen
  • David A. Mann
  • James A. Thomson
  • Linda G. Griffith
  • Roger D. Kamm
  • Michael P. Schwartz
  • William L. MurphyEmail author


Here we describe a strategy to model blood vessel development using a well-defined induced pluripotent stem cell-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats.


Stem cell Induced pluripotent stem cell Endothelial cell Angiogenesis Vascular model Vascular function Tubulogenesis Migration Sprouting Barrier function 


Funding Sources

The authors acknowledge support from the National Institutes of Health (NIH 1UH2 TR000506-01, 3UH2 TR000506-02S1, T32 HL007936-12, RO1 HL093282, and R21 EB016381-01).

Conflict of Interest Disclosure

J.A.T. is a founder, stockowner, consultant, and board member of Cellular Dynamics International, Inc. D.A.M., R.L. and C.D. are employed by, and have a financial interest in, Cellular Dynamics International Inc.

Supplementary material

12015_2014_9549_MOESM1_ESM.pptx (462 kb)
ESM 1 (PPTX 461 kb)
12015_2014_9549_MOESM2_ESM.pptx (7.8 mb)
ESM 2 (PPTX 8037 kb)


  1. 1.
    Novosel, E. C., Kleinhans, C., & Kluger, P. J. (2011). Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews, 63(4–5), 300–311. doi: 10.1016/j.addr.2011.03.004.CrossRefPubMedGoogle Scholar
  2. 2.
    Phelps, E. A., & García, A. J. (2010). Engineering more than a cell: Vascularization strategies in tissue engineering. Current Opinion in Biotechnology, 21(5), 704–709. doi: 10.1016/j.copbio.2010.06.005.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Nguyen, E. H., Zanotelli, M. R., Schwartz, M. P., & Murphy, W. L. (2014). Differential effects of cell adhesion, modulus and VEGFR-2 inhibition on capillary network formation in synthetic hydrogel arrays. Biomaterials, 35(7), 2149–2161. doi: 10.1016/j.biomaterials.2013.11.054.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Moon, J. J., Saik, J. E., Poche, R. A., Leslie-Barbick, J. E., Smith, A. A., Dickinson, M. E., et al. (2011). Biomimetic hydrogels with pro-angiogenic properties. Biomaterials, 31(14), 3840–3847. doi: 10.1016/j.biomaterials.2010.01.104.Biomimetic.
  5. 5.
    Phelps, E. A., Landázuri, N., Thulé, P. M., Taylor, W. R., & García, A. J. (2010). Bioartificial matrices for therapeutic vascularization. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3323–3328. doi: 10.1073/pnas.0905447107.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Chung, S., Sudo, R., Vickerman, V., Zervantonakis, I. K., & Kamm, R. D. (2010). Microfluidic platforms for studies of angiogenesis, cell migration, and cell–cell interactions. Annals of Biomedical Engineering, 38(3), 1164–1177. doi: 10.1007/s10439-010-9899-3.CrossRefPubMedGoogle Scholar
  7. 7.
    Vickerman, V., Blundo, J., Chung, S., & Kamm, R. (2008). Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab on a Chip, 8(9), 1468–1477. doi: 10.1039/b802395f.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Chrobak, K. M., Potter, D. R., & Tien, J. (2006). Formation of perfused, functional microvascular tubes in vitro. Microvascular Research, 71(3), 185–196. doi: 10.1016/j.mvr.2006.02.005.CrossRefPubMedGoogle Scholar
  9. 9.
    Moya, M. L., Hsu, Y., Lee, A. P., Hughes, C. C. W., & George, S. C. (2013). In vitro perfused human capillary networks. Tissue Engineering Part C, 19(9), 730–737. doi: 10.1089/ten.tec.2012.0430.CrossRefGoogle Scholar
  10. 10.
    Kim, S., Lee, H., Chung, M., & Jeon, N. L. (2013). Engineering of functional, perfusable 3D microvascular networks on a chip. Lab on a Chip, 13(8), 1489–1500. doi: 10.1039/c3lc41320a.CrossRefPubMedGoogle Scholar
  11. 11.
    Nolan, D. J., Ginsberg, M., Israely, E., Palikuqi, B., Poulos, M. G., James, D., et al. (2013). Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Developmental Cell, 26(2), 204–219. doi: 10.1016/j.devcel.2013.06.017.CrossRefPubMedGoogle Scholar
  12. 12.
    Wetmore, B. A., Wambaugh, J. F., Ferguson, S. S., Li, L., Clewell, H. J., Judson, R. S., et al. (2013). Relative impact of incorporating pharmacokinetics on predicting in vivo hazard and mode of action from high-throughput in vitro toxicity assays. Toxicological Sciences, 132(2), 327–346. doi: 10.1093/toxsci/kft012.CrossRefPubMedGoogle Scholar
  13. 13.
    Tice, R. R., Austin, C. P., Kavlock, R. J., & Bucher, J. R. (2013). Improving the human hazard characterization of chemicals: A Tox21 update. Environmental Health Perspectives, 121(7), 756–765. doi: 10.1289/ehp.1205784.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Dix, D. J., Houck, K. A., Judson, R. S., Kleinstreuer, N. C., Knudsen, T. B., Martin, M. T., et al. (2012). Incorporating biological, chemical, and toxicological knowledge into predictive models of toxicity. Toxicological Sciences, 130(2), 440–441. doi: 10.1093/toxsci/kfs281.CrossRefPubMedGoogle Scholar
  15. 15.
    Kleinstreuer, N. C., Judson, R. S., Reif, D. M., Sipes, N. S., Singh, A. V., Chandler, K. J., et al. (2011). Environmental impact on vascular development predicted by high-throughput screening. Environmental Health Perspectives, 119(11), 1596–1603. doi: 10.1289/ehp.1103412.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920. doi: 10.1126/science.1151526.CrossRefPubMedGoogle Scholar
  17. 17.
    Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872. doi: 10.1016/j.cell.2007.11.019.CrossRefPubMedGoogle Scholar
  18. 18.
    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147. doi: 10.1126/science.282.5391.1145.CrossRefPubMedGoogle Scholar
  19. 19.
    Hu, K., Yu, J., Suknuntha, K., Tian, S., Montgomery, K., Choi, K.-D., et al. (2011). Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood, 117(14), e109–e119. doi: 10.1182/blood-2010-07-298331.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Howden, S. E., Gore, A., Li, Z., Fung, H.-L., Nisler, B. S., Nie, J., et al. (2011). Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6537–6542. doi: 10.1073/pnas.1103388108.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Ebert, A. D., Yu, J., Rose, F. F., Mattis, V. B., Lorson, C. L., Thomson, J. A., et al. (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227), 277–280. doi: 10.1038/nature07677.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., et al. (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science (New York, N.Y.), 321(5893), 1218–1221. doi: 10.1126/science.1158799.CrossRefGoogle Scholar
  23. 23.
    Kusuma, S., Shen, Y.-I., Hanjaya-Putra, D., Mali, P., Cheng, L., & Gerecht, S. (2013). Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12601–12606. doi: 10.1073/pnas.1306562110.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Kane, N. M., Xiao, Q., Baker, A. H., Luo, Z., Xu, Q., & Emanueli, C. (2011). Pluripotent stem cell differentiation into vascular cells: A novel technology with promises for vascular re(generation). Pharmacology & Therapeutics, 129(1), 29–49. doi: 10.1016/j.pharmthera.2010.10.004.CrossRefGoogle Scholar
  25. 25.
    Choi, K.-D., Yu, J., Smuga-Otto, K., Salvagiotto, G., Rehrauer, W., Vodyanik, M., et al. (2009). Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells, 27(3), 559–567. doi: 10.1634/stemcells.2008-0922.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., et al. (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1), 31–41. doi: 10.1016/j.immuni.2004.06.006.CrossRefPubMedGoogle Scholar
  27. 27.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4391–4396. doi: 10.1073/pnas.032074999.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    White, M. P., Rufaihah, A. J., Liu, L., Ghebremariam, Y. T., Ivey, K. N., Cooke, J. P., et al. (2013). Limited gene expression variation in human embryonic stem cell and induced pluripotent stem cell-derived endothelial cells. Stem Cells, 31(1), 92–103. doi: 10.1002/stem.1267.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Voyta, J. C., Via, D. P., Butterfield, C. E., & Zetter, B. R. (1984). Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. The Journal of cell biology, 99(6), 2034–40. Retrieved from
  30. 30.
    Jackson, C. J., Garbett, P. K., Nissen, B., & Schrieber, L. (1990). Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium. Journal of cell science, 96 ( Pt 2), 257–62. Retrieved from
  31. 31.
    Strawn, L. M., Mcmahon, G., App, H., Schreck, R., Kuchler, W. R., Longhi, M. P., et al. (1996). Flk-1 as a target for tumor growth inhibition. Cancer Research, 56, 3540–3545.PubMedGoogle Scholar
  32. 32.
    Millauer, B., Wizigmann-Voos, S., Schnürch, H., Martinez, R., Møller, N. P. H., Risau, W., & Ullrich, A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell, 72(6), 835–46. Retrieved from
  33. 33.
    Ferrara, N., & Henzel, W. J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications, 161(2), 851–858.CrossRefPubMedGoogle Scholar
  34. 34.
    Mehta, D., & Malik, A. B. (2006). Signaling mechanisms regulating endothelial permeability. Physiology Reviews, 86, 279–367. doi: 10.1152/physrev.00012.2005.CrossRefGoogle Scholar
  35. 35.
    Bardin, N., Blot-Chabaud, M., Despoix, N., Kebir, A., Harhouri, K., Arsanto, J.-P., et al. (2009). CD146 and its soluble form regulate monocyte transendothelial migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(5), 746–753. doi: 10.1161/ATVBAHA.108.183251.CrossRefPubMedGoogle Scholar
  36. 36.
    Gardner, T. W., Eller, A. W., Friberg, T. R., D’Antonio, J. A., & Hollis, T. M. (1995). Antihistamines reduce blood-retinal barrier permeability in type I (insulin-dependent) diabetic patients with nonproliferative retinopathy. Retina, 15(2), 134–140.CrossRefPubMedGoogle Scholar
  37. 37.
    Krause, D., Mischeck, U., Galla, H. J., & Dermietzel, R. (1991). Correlation of zonula occludens ZO-1 antigen expression and transendothelial resistance in porcine and rat cultured cerebral endothelial cells. Neuroscience letters, 128(2), 301–4. Retrieved from
  38. 38.
    Moy, A. B., Blackwell, K., & Kamath, A. (2002). Differential effects of histamine and thrombin on endothelial barrier function through actin-myosin tension. American journal of physiology. Heart and circulatory physiology, 282(1), H21–9. Retrieved from
  39. 39.
    Laposata, M., Dovnarsky, D. K., & Shin, H. S. (1983). Thrombin-induced gap formation in confluent endothelial cell monolayers. Blood, 62(3), 549–556.PubMedGoogle Scholar
  40. 40.
    Zervantonakis, I. K., Hughes-Alford, S. K., Charest, J. L., Condeelis, J. S., Gertler, F. B., & Kamm, R. D. (2012). Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13515–13520. doi: 10.1073/pnas.1210182109.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Folkman, J., & Haudenschild, C. (1980). Angiogenesis in vitro. Nature, 288, 551–556.CrossRefPubMedGoogle Scholar
  42. 42.
    Montesano, R., Orci, L., & Vassalli, P. (1983). In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. The Journal of cell biology, 97(5 Pt 1), 1648–52. Retrieved from
  43. 43.
    Grant, D. S., Tashiro, K., Segui-Real, B., Yamada, Y., Martin, G. R., & Kleinman, H. K. (1989). Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell, 58(5), 933–43. Retrieved from
  44. 44.
    Kubota, Y., Kleinman, H. K., Martin, G. R., & Lawley, T. J. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. The Journal of cell biology, 107(4), 1589–98. Retrieved from
  45. 45.
    Leslie-Barbick, J. E., Saik, J. E., Gould, D. J., Dickinson, M. E., & West, J. L. (2011). The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide. Biomaterials, 32(25), 5782–5789. doi: 10.1016/j.biomaterials.2011.04.060.CrossRefPubMedGoogle Scholar
  46. 46.
    Leslie-Barbick, J. E., Moon, J. J., & West, J. L. (2009). Covalently-immobilized vascular endothelial growth factor promotes endothelial cell Tubulogenesis in poly ( ethylene glycol ) diacrylate hydrogels. Journal of Biomaterials Science, 20, 1763–1779.CrossRefGoogle Scholar
  47. 47.
    Domansky, K., Inman, W., Serdy, J., Dash, A., Lim, M. H. M., & Griffith, L. G. (2010). Perfused multiwell plate for 3D liver tissue engineering. Lab on a Chip, 10(1), 51–58. doi: 10.1039/b913221j.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Dewey, C. F., Bussolari, S. R., Gimbrone, M. A., & Davies, P. F. (1981). The dynamic response of vascular endothelial cells to fluid shear stress. Journal of Biomechanical Engineering, 103(3), 177–85. Retrieved from
  49. 49.
    Ribatti, D., & Crivellato, E. (2012). “Sprouting angiogenesis”, a reappraisal. Developmental Biology, 372(2), 157–165. doi: 10.1016/j.ydbio.2012.09.018.CrossRefPubMedGoogle Scholar
  50. 50.
    Haspel, H. C., Scicli, G. M., Mcmahon, G., & Scicli, A. G. (2002). Inhibition of vascular endothelial growth factor- associated tyrosine kinase activity with SU5416 blocks sprouting in the microvascular endothelial cell spheroid model of angiogenesis. Microvascular Research, 315, 304–315. doi: 10.1006/mvre.2001.2383.CrossRefGoogle Scholar
  51. 51.
    Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F., et al. (2007). SIRT1 controls endothelial angiogenic functions during vascular growth. Genes & Development, 21(20), 2644–2658. doi: 10.1101/gad.435107.CrossRefGoogle Scholar
  52. 52.
    Germeroth, L., Piossek, C., Thierauch, K.-H., Schneider-Mergener, J., Volkmer-Engert, R., Bachmann, M. F., Augustin, H. G. (2003). Potent inhibition of angiogenesis by D,L-peptides derived from vascular endothelial growth factor receptor 2. Thrombosis and Haemostasis, 501–510. doi: 10.1160/TH03-02-0106.
  53. 53.
    Loges, S., Roncal, C., & Carmeliet, P. (2009). Development of targeted angiogenic medicine. Journal of Thrombosis and Haemostasis, 7(1), 21–33. doi: 10.1111/j.1538-7836.2008.03203.x.CrossRefPubMedGoogle Scholar
  54. 54.
    Mabeta, P., & Pepper, M. S. (2009). A comparative study on the anti-angiogenic effects of DNA-damaging and cytoskeletal-disrupting agents. Angiogenesis, 12, 81–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Nakatsu, M. N., Sainson, R. C. A., Aoto, J. N., Taylor, K. L., Aitkenhead, M., Pérez-del-Pulgar, S., et al. (2003). Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: The role of fibroblasts and Angiopoietin-1. Microvascular Research, 66(2), 102–112. doi: 10.1016/S0026-2862(03)00045-1.
  56. 56.
    Barkefors, I., Le Jan, S., Jakobsson, L., Hejll, E., Carlson, G., Johansson, H., et al. (2008). Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: Effects on chemotaxis and chemokinesis. Journal of Biological Chemistry, 283(20), 13905–13912. doi: 10.1074/jbc.M704917200.CrossRefPubMedGoogle Scholar
  57. 57.
    Van Horssen, R., Galjart, N., Rens, J. A. P., Eggermont, A. M. M., & ten Hagen, T. L. M. (2006). Differential effects of matrix and growth factors on endothelial and fibroblast motility: Application of a modified cell migration assay. Journal of Cellular Biochemistry, 99(6), 1536–1552. doi: 10.1002/jcb.20994.CrossRefPubMedGoogle Scholar
  58. 58.
    Staton, C. A., Reed, M. W. R., & Brown, N. J. (2009). A critical analysis of current in vitro and in vivo angiogenesis assays. International Journal of Experimental Pathology, 90(3), 195–221. doi: 10.1111/j.1365-2613.2008.00633.x.CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Chi, J.-T., Chang, H. Y., Haraldsen, G., Jahnsen, F. L., Troyanskaya, O. G., Chang, D. S., et al. (2003). Endothelial cell diversity revealed by global expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 10623–10628. doi: 10.1073/pnas.1434429100.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Rufaihah, A. J., Huang, N. F., Kim, J., Herold, J., Volz, K. S., Park, T. S., … Cooke, J. P. (2013). Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity. American Journal of Translational Research, 5(1), 21–35. Retrieved from
  61. 61.
    Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 6(4), 389–395. doi: 10.1038/74651.CrossRefPubMedGoogle Scholar
  62. 62.
    Woad, K. J., Hunter, M. G., Mann, G. E., Laird, M., Hammond, A. J., & Robinson, R. S. (2012). Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction, 143(1), 35–43. doi: 10.1530/REP-11-0277.CrossRefPubMedGoogle Scholar
  63. 63.
    Mavria, G., Vercoulen, Y., Yeo, M., Paterson, H., Karasarides, M., Marais, R., et al. (2006). ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell, 9(1), 33–44. doi: 10.1016/j.ccr.2005.12.021.CrossRefPubMedGoogle Scholar
  64. 64.
    Oikawa, T., Shimamura, M., & Ashino, H. (1992). Inhibition of angiogenesis by staurosporine, a potent protein kinase inhibitor. Journal of Antibiotics, 45(7), 1155–1160.CrossRefPubMedGoogle Scholar
  65. 65.
    Liu, T.-C., Branco, C. P., Rabkin, S. D., & Martuza, R. L. (2008). Trichostatin A and oncolytic HSV combination therapy shows enhanced antitumoral and antiangiogenic effects. Molecular Therapy, 16(6), 1041–1047. doi: 10.1038/mt.2008.58.Trichostatin.CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    O’Farrell, A.-M., Abrams, T. J., Yuen, H. A., Ngai, T. J., Louie, S. G., Yee, K. W. H., et al. (2003). SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood, 101(9), 3597–3605. doi: 10.1182/blood-2002-07-2307.CrossRefPubMedGoogle Scholar
  67. 67.
    Spiekermann, K., Faber, F., Voswinckel, R., & Hiddemann, W. (2002). The protein tyrosine kinase inhibitor SU5614 inhibits VEGF-induced endothelial cell sprouting and induces growth arrest and apoptosis by inhibition of c-kit in AML cells. Experimental Hematology, 30(7), 767–73. Retrieved from
  68. 68.
    Sun, L., Tran, N., Liang, C., Hubbard, S., Tang, F., Lipson, K., et al. (2000). Identification of Substituted 3-[(4,5,6,7-Tetrahydro-1H-indol-2-yl)methylene]- 1,3-dihydroindol-2-ones as Growth Factor Receptor Inhibitors for VEGF-R2 ( Flk-1 / KDR ), FGF-R1, and PDGF-R Tyrosine Kinases. Journal of Medicinal Chemistry, 43, 2655–2663.CrossRefPubMedGoogle Scholar
  69. 69.
    Korff, T., & Augustin, H. G. (1999). Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of Cell Science, 112, 3249–58. Retrieved from
  70. 70.
    Murakami, M., Nguyen, L. T., Zhang, Z. W., Moodie, K. L., Carmeliet, P., Stan, R. V., et al. (2008). The FGF system has a key role in regulating vascular integrity. Journal of Clinical Investigation, 118(10), 3355–3366. doi: 10.1172/JCI35298.transmembrane.CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Ellis, L. M., & Hicklin, D. J. (2008). VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nature Reviews Cancer, 8(8), 579–591. doi: 10.1038/nrc2403.CrossRefPubMedGoogle Scholar
  72. 72.
    Woad, K. J., Hammond, A. J., Hunter, M., Mann, G. E., Hunter, M. G., & Robinson, R. S. (2009). FGF2 is crucial for the development of bovine luteal endothelial networks in vitro. Reproduction (Cambridge, England), 138(3), 581–588. doi: 10.1530/REP-09-0030.CrossRefGoogle Scholar
  73. 73.
    Yoshida, A., Anand-Apte, B., & Zetter, B. R. (1996). Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors, 13(1–2), 57–64. doi: 10.3109/08977199609034566.
  74. 74.
    Herbert, S. P., & Stainier, D. Y. R. (2011). Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nature Reviews Molecular Cell Biology, 12(9), 551–564. doi: 10.1038/nrm3176.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Whisler, J. A., Chen, M. B., & Kamm, R. D. (2013). Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System, 20(7). doi: 10.1089/ten.tec.2013.0370

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David G. Belair
    • 1
  • Jordan A. Whisler
    • 2
  • Jorge Valdez
    • 3
  • Jeremy Velazquez
    • 3
  • James A. Molenda
    • 1
  • Vernella Vickerman
    • 4
  • Rachel Lewis
    • 5
  • Christine Daigh
    • 5
  • Tyler D. Hansen
    • 1
  • David A. Mann
    • 5
  • James A. Thomson
    • 4
    • 6
    • 7
  • Linda G. Griffith
    • 3
  • Roger D. Kamm
    • 2
    • 3
  • Michael P. Schwartz
    • 1
  • William L. Murphy
    • 1
    • 8
    • 9
    • 10
    Email author
  1. 1.Department of Biomedical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Morgridge Institute for ResearchMadisonUSA
  5. 5.Cellular Dynamics International, Inc.MadisonUSA
  6. 6.Department of Cell and Regenerative BiologyUniversity of Wisconsin-MadisonMadisonUSA
  7. 7.Department of Molecular Cellular and Developmental BiologyUniversity of California-Santa BarbaraSanta BarbaraUSA
  8. 8.Material Science ProgramUniversity of Wisconsin-MadisonMadisonUSA
  9. 9.Department of Orthopedics and RehabilitationUniversity of Wisconsin-MadisonMadisonUSA
  10. 10.Wisconsin Institute for Medical ResearchMadisonUSA

Personalised recommendations