Skip to main content
Log in

Impact of Tissue-Specific Stem Cells on Lineage-Specific Differentiation: A Focus on the Musculoskeletal System

Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Tissue-specific stem cells are found throughout the body and, with proper intervention and environmental cues, these stem cells exercise their capabilities for differentiation into several lineages to form cartilage, bone, muscle, and adipose tissue in vitro and in vivo. Interestingly, it has been widely demonstrated that they do not differentiate with the same efficacy during lineage-specific differentiation studies, as the tissue-specific stem cells are generally more effective when differentiating toward the tissues from which they were derived. This review focuses on four mesodermal lineages for tissue-specific stem cell differentiation: adipogenesis, chondrogenesis, myogenesis, and osteogenesis. It is intended to give insight into current multilineage differentiation and comparative research, highlight and contrast known trends regarding differentiation, and introduce supporting evidence which demonstrates particular tissue-specific stem cells’ superiority in lineage-specific differentiation, along with their resident tissue origins and natural roles. In addition, some epigenetic and transcriptomic differences between stem cells which may explain the observed trends are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Hammerick, K. E., Huang, Z., Sun, N., Lam, M. T., Prinz, F. B., Wu, J. C., et al. (2011). Elastic properties of induced pluripotent stem cells. Tissue Engineering Part A, 17(3–4), 495–502.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Moroni, L., & Fornasari, P. M. (2013). Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues. Journal of Cellular Physiology, 228(4), 680–687.

    CAS  PubMed  Google Scholar 

  3. van der Kooy, D., & Weiss, S. (2000). Why stem cells? Science, 287(5457), 1439–1441.

    PubMed  Google Scholar 

  4. Kølle, S. F., Fischer-Nielsen, A., Mathiasen, A. B., Elberg, J. J., Oliveri, R. S., Glovinski, P. V., et al. (2013). Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. The Lancet, 382(9898), 1113–1120.

    Google Scholar 

  5. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327(3), 449–462.

    CAS  PubMed  Google Scholar 

  6. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis and Rheumatology, 52(8), 2521–2529.

    Google Scholar 

  7. Mochizuki, T., Muneta, T., Sakaguchi, Y., Nimura, A., Yokoyama, A., Koga, H., et al. (2006). Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis and Rheumatology, 54(3), 843–853.

    CAS  Google Scholar 

  8. Peng, L., Jia, Z., Yin, X., Zhang, X., Liu, Y., Chen, P., et al. (2008). Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells and Development, 17(4), 761–773.

    CAS  PubMed  Google Scholar 

  9. Xie, L., Zhang, N., Marsano, A., Vunjak-Novakovic, G., Zhang, Y., & Lopez, M. J. (2013). In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold. Stem Cell Reviews, 9(6), 858–872.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Monaco, E., Bionaz, M., Rodriguez-Zas, S., Hurley, W. L., & Wheeler, M. B. (2012). Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS ONE, 7(3), 3248–3258.

    Google Scholar 

  11. Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A., & Ramesh, T. (2012). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell and Tissue Research, 347(2), 419–427.

    PubMed  Google Scholar 

  12. Pei, M., He, F., Kish, V. L., & Vunjak-Novakovic, G. (2008). Engineering of functional cartilage tissue using stem cells from synovial lining: a preliminary study. Clinical Orthopaedics Related Research, 466(8), 1880–1889.

    PubMed Central  PubMed  Google Scholar 

  13. Pei, M., He, F., & Vunjak-Novakovic, G. (2008). Synovium-derived stem cell-based chondrogenesis. Differentiation, 76(10), 1044–1056.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Pei, M., He, F., Boyce, B. M., & Kish, V. L. (2009). Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis and Cartilage, 17(6), 714–722.

    CAS  PubMed  Google Scholar 

  15. Hennig, T., Lorenz, H., Thiel, A., Goetzke, K., Dickhut, A., Geiger, F., et al. (2007). Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6. Journal of Cellular Physiology, 211(3), 682–691.

    CAS  PubMed  Google Scholar 

  16. Djouad, F., Bony, C., Häupl, T., Uzé, G., Lahlou, N., Louis-Plence, P., et al. (2005). Transcriptional profiles discriminate bone marrow derived and synovium derived mesenchymal stem cells. Arthritis Research & Therapy, 7(6), 1304–1315.

    Google Scholar 

  17. Pei, M. (2012). Can synovium-derived stem cells deposit matrix with chondrogenic lineage-specific determinants? Journal of Tissue Science and Engineering, 3(3), 1–3.

    Google Scholar 

  18. Koga, H., Muneta, T., Nagase, T., Nimura, A., Ju, Y. J., Mochizuki, T., et al. (2008). Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell and Tissue Research, 333(2), 207–215.

    PubMed  Google Scholar 

  19. Lee, J. C., Min, H. J., Park, H. J., Lee, S., Seong, S. C., & Lee, M. C. (2013). Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy, 29(6), 1034–1046.

    PubMed  Google Scholar 

  20. Vinardell, T., Sheehy, E. J., Buckley, C. T., & Kelly, D. J. (2012). A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Engineering Part A, 18(11–12), 1161–1170.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Jones, B. A., & Pei, M. (2012). Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Engineering, Part B: Reviews, 18(4), 301–311.

    CAS  Google Scholar 

  22. Segawa, Y., Muneta, T., Makino, H., Nimura, A., Mochizuki, T., Ju, Y. J., et al. (2009). Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. Journal of Orthopaedic Research, 27(4), 435–441.

    CAS  PubMed  Google Scholar 

  23. Li, J., & Pei, M. (2012). Cell senescence: a challenge in cartilage engineering and regeneration. Tissue Engineering Part B, 18(4), 270–287.

    CAS  Google Scholar 

  24. De Bari, C., Dell’Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis and Rheumatology, 44(8), 1928–1942.

    Google Scholar 

  25. He, F., Chen, X., & Pei, M. (2009). Reconstruction of an in vitro tissue-specific microenvironment to rejuvenate synovium-derived stem cells for cartilage tissue engineering. Tissue Engineering Part A, 15(12), 3809–3821.

    CAS  PubMed  Google Scholar 

  26. He, F., & Pei, M. (2013). Extracellular matrix enhances differentiation of adipose stem cells from infrapatellar fat pad toward chondrogenesis. Journal of Tissue Engineering and Regenerative Medicine, 7(1), 73–84.

    PubMed  Google Scholar 

  27. Rinaldi, F., & Perlingeiro, R. C. (2014). Stem cells for skeletal muscle regeneration: therapeutic potential and roadblocks. Translational Research, 163(4), 409–417.

    CAS  PubMed  Google Scholar 

  28. Mitchell, K. J., Pannérec, A., Cadot, B., Parlakian, A., Besson, V., Gomes, E. R., et al. (2010). Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nature Cell Biology, 12(3), 257–266.

    CAS  PubMed  Google Scholar 

  29. Starkey, J. D., Yamamoto, M., Yamamoto, S., & Goldhamer, D. J. (2011). Skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt nonmyogenic fates. Journal of Histochemistry and Cytochemistry, 59(1), 33–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Seale, P., & Rudnicki, M. A. (2000). A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Developmental Biology, 218(2), 115–124.

    CAS  PubMed  Google Scholar 

  31. Boppart, M. D., De Lisio, M., Zou, K., & Huntsman, H. D. (2013). Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Frontiers in Physiology, 4, 310.

    PubMed Central  PubMed  Google Scholar 

  32. Doyle, M. J., Zhou, S., Tanaka, K. K., Pisconti, A., Farina, N. H., Sorrentino, B. P., et al. (2011). Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration. Journal of Cell Biology, 195(1), 147–163.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Qu-Petersen, Z., Deasy, B., Jankowski, R., Ikezawa, M., Cummins, J., Pruchnic, R., et al. (2002). Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. Journal of Cell Biology, 157(5), 851–864.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Motohashi, N., Uezumi, A., Yada, E., Fukada, S., Fukushima, K., Imaizumi, K., et al. (2008). Muscle CD31(−)CD45(−) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. American Journal of Pathology, 173(3), 781–791.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Hawke, T. J., & Garry, D. J. (2001). Myogenic satellite cells: physiology to molecular biology. Journal of Applied Physiology, 91(2), 534–551.

    CAS  PubMed  Google Scholar 

  36. Meligy, F. Y., Shigemura, K., Behnsawy, H. M., Fujisawa, M., Kawabata, M., & Shirakawa, T. (2012). The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In vitro Cellular and Developmental Biology-Animal, 48(4), 203–215.

    PubMed  Google Scholar 

  37. Bayati, V., Hashemitabar, M., Gazor, R., Nejatbakhsh, R., & Bijannejad, D. (2013). Expression of surface markers and myogenic potential of rat bone marrow- and adipose-derived stem cells: a comparative study. Anatomy and Cell Biology, 46(2), 113–121.

    PubMed Central  PubMed  Google Scholar 

  38. Lei, H., Yu, B., & Huang, Z. (2013). Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle. Molecular Biology Reports, 40(2), 885–892.

    CAS  PubMed  Google Scholar 

  39. De Bari, C., Dell’Accio, F., Vandenabeele, F., Vermeesch, J. R., Raymackers, J. M., & Luyten, F. P. (2003). Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. Journal of Cell Biology, 160(6), 909–918.

    PubMed Central  PubMed  Google Scholar 

  40. Rosset, P., Deschaseaux, F., & Layrolle, P. (2014). Cell therapy for bone repair. Orthopaedics & Traumatology, Surgery & Research, 100(1 Suppl), S107–S112.

    CAS  Google Scholar 

  41. Im, G. I., Shin, Y. W., & Lee, K. B. (2005). Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage, 13(10), 845–853.

    PubMed  Google Scholar 

  42. Park, S. H., Sim, W. Y., Min, B. H., Yang, S. S., Khademhosseini, A., & Kaplan, D. L. (2012). Chip-based comparison of the osteogenesis of human bone marrow- and adipose tissue-derived mesenchymal stem cells under mechanical stimulation. PLoS ONE, 7(9), 466–489.

    Google Scholar 

  43. Muraglia, A., Cancedda, R., & Quarto, R. (2000). Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. Journal of Cell Science, 113(Pt 7), 1161–1166.

    CAS  PubMed  Google Scholar 

  44. Pantaleoni Andrietti, A., Stewart, M.C. (2012). Comparative osteogenesis of equine mesenchymal stem cells isolated from bone marrow, adipose tissue and synovium. http://hdl.handle.net/2142/31213.

  45. Jansen, B. J., Gilissen, C., Roelofs, H., Schaap-Oziemlak, A., Veltman, J. A., Raymakers, R. A., et al. (2010). Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells and Development, 19(4), 481–490.

    CAS  PubMed  Google Scholar 

  46. Colnot, C. (2011). Cell sources for bone tissue engineering: insights from basic science. Tissue Engineering, Part B: Reviews, 17(6), 449–457.

    CAS  Google Scholar 

  47. Levi, B., & Longaker, M. T. (2011). Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells, 29(4), 576–582.

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Zheng, B., Cao, B., Li, G., & Huard, J. (2006). Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Engineering, 12(7), 1891–1901.

    CAS  PubMed  Google Scholar 

  49. Li, H., Dai, K., Tang, T., Zhang, X., Yan, M., & Lou, J. (2007). Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochemical and Biophysical Research Communications, 356(4), 836–842.

    CAS  PubMed  Google Scholar 

  50. Shen, H. C., Peng, H., Usas, A., Gearhart, B., Cummins, J., Fu, F. H., et al. (2004). Ex vivo gene therapy-induced endochondral bone formation: comparison of muscle-derived stem cells and different subpopulations of primary muscle-derived cells. Bone, 34(6), 982–992.

    CAS  PubMed  Google Scholar 

  51. Udehiya, R. K., Amarpal, Aithal, H. P., Kinjavdekar, P., Pawde, A. M., Singh, R., et al. (2013). Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. Research in Veterinary Science, 94(3), 743–752.

    CAS  PubMed  Google Scholar 

  52. Sato, K., Haruyama, N., Shimizu, Y., Hara, J., & Kawamura, H. (2010). Osteogenesis by gradually expanding the interface between bone surface and periosteum enhanced by bone marrow stem cell administration in rabbits. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, Endodontics, 110(1), 32–40.

    PubMed  Google Scholar 

  53. Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S. M., Mukhachev, V., Lavroukov, A., et al. (2001). Repair of large bone defects with the use of autologous bone marrow stromal cells. New England Journal of Medicine, 344(5), 385–386.

    CAS  PubMed  Google Scholar 

  54. Pei, M., He, F., & Kish, V. L. (2011). Expansion on extracellular matrix deposited by human bone marrow stromal cells facilitates stem cell proliferation and tissue-specific lineage potential. Tissue Engineering Part A, 17(23–24), 3067–3076.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Noel, D., Caton, D., Roche, S., Bony, C., Lehmann, S., Casteilla, L., et al. (2007). Cell specific differences between human adipose derived and mesenchymal stromal cells despite similar differentiation potentials. Experimental Cell Research, 314(7), 1575–1584.

    Google Scholar 

  56. Miranda, H. C., Herai, R. H., Thomé, C. H., Gomes, G. G., Panepucci, R. A., Orellana, M. D., et al. (2012). A quantitative proteomic and transcriptomic comparison of human mesenchymal stem cells from bone marrow and umbilical cord vein. Proteomics, 12(17), 2607–2617.

    CAS  PubMed  Google Scholar 

  57. Panepucci, R. A., Siufi, J. L., Silva, W. A., Jr., Proto-Siquiera, R., Neder, L., Orellana, M., et al. (2004). Comparison of gene expression of umbilical cord vein and bone marrow derived mesenchymal stem cells. Stem Cells, 22(7), 1263–1278.

    CAS  PubMed  Google Scholar 

  58. Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O., & Michalek, J. (2012). Same or not the same? Comparison of adipose tissue derived versus bone marrow derived mesenchymal stem and stromal cells. Stem Cells and Development, 21(14), 2724–2752.

    CAS  PubMed  Google Scholar 

  59. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., et al. (2005). Experimental Hematology, 33(11), 1402–1416.

    CAS  PubMed  Google Scholar 

  60. Wegmeyer, H., Broske, A., Leddin, M., Kuentzer, K., Nisslbeck, A., Hupfeld, J., et al. (2013). Mesenchymal stromal cell characteristics vary depending on their origin. Stem Cells and Development, 22(19), 2606–2618.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Sorensen, A., Jacobsen, B., Reiner, A., Andersen, I. S., & Collas, P. (2010). Promoter DNA methylation patterns of differentiated cells are largely programmed at the progenitor stage. Molecular Biology of the Cell, 21(12), 2066–2077.

    PubMed Central  PubMed  Google Scholar 

  62. Sorensen, A. L., Timoskainen, S., West, F. D., Vekterud, K., Boquest, A. C., Ahriund-Richter, L., et al. (2010). Lineage-specific promoter DNA methylation patterns segregate adult progenitor cells types. Stem Cells and Development, 19(8), 1257–1266.

    PubMed  Google Scholar 

  63. Cook, D., & Genever, P. (2013). Regulation of mesenchymal stem cell differentiation. Advances in Experimental Medicine and Biology, 786, 213–229.

    CAS  PubMed  Google Scholar 

  64. Fakhry, M., Hamade, E., Badran, B., Buchet, R., & Magne, D. (2013). Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World Journal of Stem Cells, 5(4), 136–148.

    PubMed Central  PubMed  Google Scholar 

  65. James, A. (2013). Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo), 2013, 1155–1170.

    Google Scholar 

  66. Ragni, E., Montemurro, T., Montelatici, E., Lavazza, C., Viganò, M., Rebulla, P., et al. (2013). Differential microRNA signature of human mesenchymal stem cells from different sources reveals an “environmental-niche memory” for bone marrow stem cells. Experimental Cell Research, 319(10), 1562–1574.

    CAS  PubMed  Google Scholar 

  67. Shafiee, A., Seyedjafari, E., Soleimani, M., Ahmadbeigi, N., Dinarvand, P., & Ghaemi, N. (2011). A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnology Letters, 33(6), 1257–1264.

    CAS  PubMed  Google Scholar 

  68. Hayashi, O., Katsube, Y., Hirose, M., Ohgushi, H., & Ito, H. (2008). Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcified Tissue International, 82(3), 238–247.

    CAS  PubMed  Google Scholar 

  69. Nimura, A., Muneta, T., Koga, H., Mochizuki, T., Suzuki, K., Makino, H., et al. (2008). Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis and Rheumatology, 58(2), 501–510.

    CAS  Google Scholar 

  70. Boeuf, S., Börger, M., Hennig, T., Winter, A., Kasten, P., & Richter, W. (2009). Enhanced ITM2A expression inhibits chondrogenic differentiation of mesenchymal stem cells. Differentiation, 78(2–3), 108–115.

    CAS  PubMed  Google Scholar 

  71. Kim, W., Kim, M., & Jho, E. (2013). Wnt/B-catenin signaling: from plasma membrane to nucleus. Biochemical Journal, 450(1–2), 9–21.

    CAS  PubMed  Google Scholar 

  72. Takada, I., Kouzmenko, A., & Kato, S. (2009). Wnt and PPARg signaling in osteoblastogenesis and adipogenesis. Nature Reviews. Rheumatology, 5(8), 442–447.

    CAS  PubMed  Google Scholar 

  73. Al-Nbaheen, M., Vishnubalaji, R., Ali, D., Bouslimi, A., Al-Jassir, F., Megges, M., et al. (2013). Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Review, 9(1), 32–43.

    CAS  Google Scholar 

  74. Boeuf, S., & Richter, W. (2010). Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Research and Therapy, 1(4), 31.

    PubMed Central  PubMed  Google Scholar 

  75. Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25(3), 750–760.

    PubMed  Google Scholar 

  76. Noer, A., Sorensen, A. L., Boquest, A. C., & Collas, P. (2006). Stable CpG hypomethylation of adipogenic promoters in freshly isolated cultured and differentiated mesenchymal stem cells from adipose tissue. Molecular Biology of the Cell, 17(8), 3543–3556.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Boquest, A., Noer, A., & Collas, P. (2006). Epigenetic programming of mesenchymal stem cells from human adipose tissue. Stem Cell Review, 2(4), 319–329.

    CAS  Google Scholar 

  78. Boquest, A. C., Noer, A., Sorensen, A. L., Vekterud, K., & Collas, P. (2007). CpG methylation profiles of endothelial cell specific gene promoter regions in adipose tissue stem cells suggest limited differentiation protential towards the endothelial cell lineage. Stem Cells, 25(4), 852–861.

    CAS  PubMed  Google Scholar 

  79. Arnsdorf, E. J., Tummala, P., Castillo, A. B., Zhang, F., & Jacobs, C. R. (2010). The epigenetic mechanism of mechanically induced osteogenic differentiation. Journal of Biomechanics, 43(15), 2881–2886.

    PubMed Central  PubMed  Google Scholar 

  80. Ezura, Y., Sekiya, I., Koga, H., Muneta, T., & Noda, M. (2009). Methylation status of CpG islands in the promoter regions of signature genes during chondrogenesis of human synovium derived mesenchymal stem cells. Arthritis and Rheumatology, 60(5), 1416–1426.

    Google Scholar 

  81. Hupkes, M., Someren, E. P., Middelkamp, S. H., Piek, E., van Zoelen, E. J., & Dechering, K. J. (2011). DNA methylation restricts spontaneous multi-lineage differentiation of mesenchymal progenitor cells, but is stable during growth factor-induced terminal differentiation. Biochimica Biophysica Acta, 1813(5), 839–849.

    CAS  Google Scholar 

  82. Collas, P. (2010). Programming differentiation potential in mesenchymal stem cell. Epigenetics, 5(6), 476–482.

    CAS  PubMed  Google Scholar 

  83. Collas, P., Noer, A., & Sorensen, A. (2008). Epigenetic basis for the differentiation potential of mesenchymal and embryonic stem cells. Transfusion Medicine and Hemotherapy, 35(3), 205–215.

    PubMed Central  PubMed  Google Scholar 

  84. Mohn, F., & Schubeler, D. (2009). Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends in Genetics, 25(3), 129–136.

    CAS  PubMed  Google Scholar 

  85. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447(7143), 425–432.

    CAS  PubMed  Google Scholar 

  86. Irizarry, R., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., et al. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178–186.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Straussman, R., Nejman, D., Roberts, D., Steinfeld, I., Blum, B., Benvenisty, N., et al. (2009). Developmental programming of CpG island methylation profiles in the human genome. Nature Structural & Molecular Biology, 16(5), 564–571.

    CAS  Google Scholar 

  88. Guo, L., Zhao, R., & Wu, Y. (2011). The role of microRNAs in self renewal and differentiation of mesenchymal stem cells. Experimental Hematology, 39(6), 608–616.

    CAS  PubMed  Google Scholar 

  89. Perdiguero, E., Sousa-Victor, P., Ballestar, E., & Muñoz-Cánoves, P. (2009). Epigenetic regulation of myogenesis. Epigenetics, 4(8), 541–550.

    CAS  PubMed  Google Scholar 

  90. Romao, J., Jin, W., Dodson, M., Hausman, G. J., Moore, S. S., & Guan, L. L. (2011). MicroRNA regulation in mammalian adipogenesis. Experimental Biology and Medicine, 236(9), 997–1004.

    CAS  PubMed  Google Scholar 

  91. Teven, C., Liu, X., Hu, N., Tang, N., Kim, S. H., Huang, E., et al. (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells International, 2011, 201371.

    PubMed Central  PubMed  Google Scholar 

  92. Tan, J., Huang, H., Huang, W., Li, L., Guo, J., Huang, B., et al. (2008). The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells. Journal of Genetics and Genomics, 35(10), 585–593.

    CAS  PubMed  Google Scholar 

  93. Tan, J., Lu, J., Huang, W., Dong, Z., Kong, C., Li, L., et al. (2009). Genome-wide analysis of histone H3 lysine9 modifications in human mesenchymal stem cell osteogenic differentiation. PLoS ONE, 4, e6792.

    PubMed Central  PubMed  Google Scholar 

  94. Noer, A., Linderman, L., & Collas, P. (2009). Histone H3 modifications associated with differentiation and long term culture of mesenchymal adipose stem cells. Stem Cells and Development, 18(5), 725–736.

    CAS  PubMed  Google Scholar 

  95. Dilworth, F. J., & Blais, A. (2011). Epigenetic regulation of satellite cell activation during muscle regeneration. Stem Cell Research Therapy, 2(2), 18.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Aranda, P., Agirre, X., Ballestar, E., Andreu, E. J., Román-Gómez, J., Martin-Subero, J. I., et al. (2009). Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS ONE, 4(11), 7809.

    Google Scholar 

  97. Voigt, P., Tee, W., & Reinberg, D. (2013). A double take on bivalent promoters. Genes & Development, 27(12), 1318–1338.

    CAS  Google Scholar 

  98. Pandey, A. C., Semon, J. A., Kaushal, D., O’Sullivan, R. P., Glowacki, J., Gimble, J. M., et al. (2011). MicroRNA profiling reveals age dependent differential expression of nuclear factor kB and mitogen activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Research Therapy, 2(6), 49.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Schaap-Oziemlak, A. M., Raymakers, R. A., Bergevoet, S. M., Glissen, C., Jansen, B. J., Adema, G. J., et al. (2010). MicroRNA has-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells and Development, 19(6), 877–885.

    CAS  PubMed  Google Scholar 

  100. Xu, S., Santini, G. C., Veirman, K. D., Broek, I. V., Leleu, X., Becker, A. D., et al. (2013). Upregulation of miR-135b is involved in the impaired osteogenenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS ONE, 8(11), e79752.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Li, Z., Hassan, M. Q., Volinia, S., van Wijnen, A. J., Stein, J. L., Croce, C. M., et al. (2008). A microRNA signature for a BMP2 induced osteoblast lineage commitment program. Proceedings of the National Academy of Sciences USA, 105(37), 13906–13911.

    CAS  Google Scholar 

  102. Yang, Z., Bian, C., Zhou, H., Huang, S., Wang, S., Liao, L., et al. (2011). MicroRNA has-miR-138 inhibits adipogenic differentiation of human adipose tissue derived mesenchymal stem cells through adenovirus EID-1. Stem Cells and Development, 20(2), 259–267.

    CAS  PubMed  Google Scholar 

  103. Eskildsen, T., Taipaleenmaki, H., Stenvang, J., Abdallah, B. M., Ditzel, N., Nossent, A. Y., et al. (2011). MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proceedings of the National Academy of Sciences USA, 108(15), 6139–6144.

    Google Scholar 

  104. Mathieu, P., & Loboa, E. (2012). Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Engineering Part B, 18(6), 436–444.

    CAS  Google Scholar 

  105. Sun, F., Wang, J., Pan, Q., Yu, Y., Zhang, Y., Wan, Y., et al. (2009). Characterization of function and regulation of miR-24-1 and miR-31. Biochemical and Biophysical Research Communications, 380(3), 660–665.

    CAS  PubMed  Google Scholar 

  106. Baglìo, S. R., Devescovi, V., Granchi, D., & Baldin, N. (2013). MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene, 527(1), 321–331.

    PubMed  Google Scholar 

  107. Deng, Y., Zhou, H., Zou, D., Xie, Q., Bi, X., Gu, P., et al. (2013). The role of miR-31-modified adipose tissue derived stem cells in repairing rat critical sized calvarial defects. Biomaterials, 34(28), 6717–6728.

    CAS  PubMed  Google Scholar 

  108. Gao, J., Yang, T., Han, J., Yan, K., Qui, X., Zhou, Y., et al. (2011). MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. Journal of Cellular Biochemistry, 112(7), 1844–1856.

    CAS  PubMed  Google Scholar 

  109. Bourin, P., Bunnell, B. A., Casteilla, L., Dominici, M., Katz, A. J., March, K. L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy, 15(6), 641–648.

    PubMed Central  PubMed  Google Scholar 

  110. Dmitrieva, R. I., Minullina, I. R., Bilibina, A. A., Tarasova, O. V., Anisimov, S. V., & Zaritskey, A. Y. (2012). Bone marrow and subcutaneous adipose tissue derived mesenchymal stem cells: Differences and similarities. Cell Cycle, 11(2), 377–383.

    CAS  PubMed  Google Scholar 

  111. Zhao, L., & Hantash, B. (2011). TGF-B1 regulates differentiation of bone marrow mesenchymal stem cells. Vitamins and Hormones, 87, 127–141.

    CAS  PubMed  Google Scholar 

  112. Erickson, G. R., Gimble, J. M., Franklin, D. M., Rice, H. E., Awad, H., & Guilak, F. (2002). Chondrogenic potential of adipose tissue derived stromal cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 290(2), 763–769.

    CAS  PubMed  Google Scholar 

  113. Mehlhorn, A. T., Niemeyer, P., Kaiser, S., Finkenzeller, G., Stark, G. B., Sudkamp, N. P., et al. (2006). Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue. Tissue Engineering, 12(10), 2853–2862.

    CAS  PubMed  Google Scholar 

  114. Afizah, H., Yang, Z., Hui, J. H., Ouyang, H. W., & Lee, E. H. (2007). A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Engineering, 13(4), 659–666.

    CAS  PubMed  Google Scholar 

  115. Shintani, N., & Hunziker, E. B. (2011). Differential effects of dexamethasone on the chondrogenesis of mesenchymal stromal cells: influence of microenvironment, tissue origin and growth factor. European Cells and Materials, 22, 302–319.

    CAS  PubMed  Google Scholar 

  116. Heintzman, N., Hon, G., Hawkins, R., Kheradpour, P., Stark, A., Harp, L. F., et al. (2009). Histone modifications at human enhancers reflect global cell type specific gene expression. Nature, 459(7243), 108–112.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Ong, C. T., & Corces, V. G. (2012). Enhancers: emerging roles in cell fate specification. EMBO Reports, 13(5), 423–430.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Suzanne Danley and Kayla Branyan for help in editing the manuscript. This project was partially supported by Research Grants from the AO Foundation (S-12-19P) and NIH R03 (no. 1 R03 AR062763-01A1).

Author contributions

T.P.: collection and assembly of data, data analysis and interpretation, and manuscript writing; K.L.: collection and assembly of data, data analysis and interpretation, and manuscript writing; M.P.: conception and design, administrative support, manuscript writing, and final approval of the manuscript.

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Pei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzute, T., Lynch, K. & Pei, M. Impact of Tissue-Specific Stem Cells on Lineage-Specific Differentiation: A Focus on the Musculoskeletal System. Stem Cell Rev and Rep 11, 119–132 (2015). https://doi.org/10.1007/s12015-014-9546-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9546-8

Keywords

Navigation