Skip to main content
Log in

Motor Neuron Differentiation from Pluripotent Stem Cells and Other Intermediate Proliferative Precursors that can be Discriminated by Lineage Specific Reporters

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

We have used a four stage protocol to generate spinal motor neurons (MNs) from human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs). These stages include the pluripotent stem cell (PSC) stage, neural stem cell (NSC) stage, OLIG2 expressing motor neuron precursor (MNP) stage, and HB9 expressing mature-MN stage. To optimize the differentiation protocol reporter lines marking the NSC and MNP stages were used. The NSC stage is a pro-proliferative precursor stage at which cells can be directed to differentiate to other neural types like cortical neurons also, in addition to MNs; thus, NSCs can be expanded and stored for future differentiation to different neural types thereby, shortening the differentiation interval as compared to the complete process of differentiation from ESCs or iPSCs. Additionally, we find that OLIG2 positive cells at the MNP stage can be cryopreserved and then recovered to continue the process of MN differentiation, thereby providing a highly stable and reproducible technique for bulk differentiation. MNPs were differentiated to MNs expressing the marker HB9 demonstrating that mature-MNs can be generated with this protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PSC:

Pluripotent stem cell

iPSC:

Induced pluripotent stem cell

hESC:

Human embryonic stem cell

NSC:

Neural stem cell

MNP:

Motor neuron precursor

MN:

Motor neuron

CNS:

Central nervous system

O-L plate:

Ornithine-laminin coated plate

bFGF:

Basic fibroblast growth factor

BMP:

Bone morphogenetic protein

RA:

Retinoic acid

SHH:

Sonic hedgehog

BDNF:

Brain derived neurotrophic factor

GDNF:

Glial cell line derived neurotrophic factor

HD:

Homeodomain

References

  1. Carpenter, M. K., Inokuma, M. S., Denham, J., Mujtaba, T., Chiu, C., & Rao, M. S. (2001). Enrichment of neurons and neural precursors from human embryonic stem cells. Experimental Neurology, 1722, 383–397.

    Article  Google Scholar 

  2. Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 1912, 1129–1133.

    Article  Google Scholar 

  3. Reubinoff, B. E., Itsykson, P., Turetsky, T., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 1912, 1134–1140.

    Article  Google Scholar 

  4. Yan, Y., Shin, S., Jha, B. S., et al. (2013). Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Translational Medicine, 211, 862–870.

    Article  Google Scholar 

  5. Efthymiou, A., Shaltouki, A., Steiner, J. P., et al. (2014). Functional screening assays with neurons generated from pluripotent stem cell–derived neural stem cells. Journal of Biomolecular Screening, 191, 32–43.

    Article  Google Scholar 

  6. Kehat, I., Kenyagin-Karsenti, D., Snir, M., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of Clinical Investigation, 1083, 407–414.

    Article  Google Scholar 

  7. Barberi, T., Bradbury, M., Dincer, Z., Panagiotakos, G., Socci, N. D., & Studer, L. (2007). Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nature Medicine, 135, 642–648.

    Article  Google Scholar 

  8. zur Nieden, N. I., Kempka, G., & Ahr, H. J. (2003). In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation, 711, 18–27.

    Article  Google Scholar 

  9. Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., & Thomson, J. A. (2001). Hematopoietic colony-forming cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences, 9819, 10716–10721.

    Article  Google Scholar 

  10. Jessell, T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Reviews Genetics, 11, 20–29.

    Article  Google Scholar 

  11. Lee, S. K., & Pfaff, S. L. (2001). Transcriptional networks regulating neuronal identity in the developing spinal cord. Nature Neuroscience, 4(Suppl), 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  12. Briscoe, J., & Ericson, J. (2001). Specification of neuronal fates in the ventral neural tube. Current Opinion in Neurobiology, 111, 43–49.

    Article  Google Scholar 

  13. Watanabe, K., Kamiya, D., Nishiyama, A., et al. (2005). Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neuroscience, 83, 288–296.

    Article  Google Scholar 

  14. Munoz-Sanjuan, I., & Brivanlou, A. H. (2002). Neural induction, the default model and embryonic stem cells. Nature Reviews Neuroscience, 34, 271–280.

    Article  Google Scholar 

  15. Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 273, 275–280.

    Article  Google Scholar 

  16. Zhou, J., Su, P., Li, D., Tsang, S., Duan, E., & Wang, F. (2010). High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells, 2810, 1741–1750.

    Article  Google Scholar 

  17. Durston, A. J., van der Wees, J., Pijnappel, W. W., & Godsave, S. F. (1998). Retinoids and related signals in early development of the vertebrate central nervous system. Current Topics in Developmental Biology, 40, 111–175.

    Article  CAS  PubMed  Google Scholar 

  18. Wichterle, H., Lieberam, I., Porter, J. A., & Jessell, T. M. (2002). Directed differentiation of embryonic stem cells into motor neurons. Cell, 1103, 385–397.

    Article  Google Scholar 

  19. Patani, R., Hollins, A. J., Wishart, T. M., et al. (2011). Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state. Nature Communications, 2, 214.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Briscoe, J., Pierani, A., Jessell, T. M., & Ericson, J. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell, 1014, 435–445.

    Article  Google Scholar 

  21. Wang, Z. B., Zhang, X., & Li, X. J. (2013). Recapitulation of spinal motor neuron-specific disease phenotypes in a human cell model of spinal muscular atrophy. Cell Research, 233, 378–393.

    Article  Google Scholar 

  22. Dimos, J. T., Rodolfa, K. T., Niakan, K. K., et al. (2008). Induced pluripotent stem cells generated from patients with ALS Can Be differentiated into motor neurons. Science, 3215893, 1218–1221.

    Article  Google Scholar 

  23. Lee, H., Shamy, G. A., Elkabetz, Y., et al. (2007). Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons. Stem Cells, 258, 1931–1939.

    Article  Google Scholar 

  24. Hu, B. Y., & Zhang, S. C. (2009). Differentiation of spinal motor neurons from pluripotent human stem cells. Nature Protocols, 49, 1295–1304.

    Article  Google Scholar 

  25. Karumbayaram, S., Novitch, B. G., Patterson, M., et al. (2009). Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells, 274, 806–811.

    Article  Google Scholar 

  26. Li, X. J., Du, Z. W., Zarnowska, E. D., et al. (2005). Specification of motoneurons from human embryonic stem cells. Nature Biotechnology, 232, 215–221.

    Article  Google Scholar 

  27. Qu, Q., Li, D., Louis, K. R., et al. (2014). High-efficiency motor neuron differentiation from human pluripotent stem cells and the function of Islet-1. Nature Communications, 5, 3449.

    PubMed  Google Scholar 

  28. Hester, M. E., Murtha, M. J., Song, S., et al. (2011). Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Molecular Therapy, 1910, 1905–1912.

    Article  Google Scholar 

  29. Son, E., Ichida, J., Wainger, B., et al. (2011). Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell, 93, 205–218.

    Article  Google Scholar 

  30. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., et al. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 62, 88–95.

    Google Scholar 

  31. Bibel, M., Richter, J., Schrenk, K., et al. (2004). Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nature Neuroscience, 79, 1003–1009.

    Article  Google Scholar 

  32. Li, X., Hu, B., Jones, S. A., et al. (2008). Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells, 264, 886–893.

    Article  Google Scholar 

  33. Xue, H., Wu, S., Papadeas, S. T., et al. (2009). A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells. Stem Cells, 278, 1836–1846.

    Article  Google Scholar 

  34. Ericson, J., Morton, S., Kawakami, A., Roelink, H., & Jessell, T. M. (1996). Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell, 874, 661–673.

    Article  Google Scholar 

  35. Reinhardt, P., Glatza, M., Hemmer, K., et al. (2013). Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling. PLoS ONE, 83, e59252.

    Article  Google Scholar 

  36. Wang, F., Hao, H., Zhao, S., et al. (2011). Roles of activated astrocyte in neural stem cell proliferation and differentiation. Stem Cell Research, 71, 41–53.

    Article  Google Scholar 

  37. Pons, S., & Marti, E. (2000). Sonic hedgehog synergizes with the extracellular matrix protein vitronectin to induce spinal motor neuron differentiation. Development, 1272, 333–342.

    Google Scholar 

  38. Jha, B. S., Ayres, C. E., Bowman, J. R., et al. (2011). Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. Journal of Nanomaterials, 2011.

  39. Jha, B. S., Colello, R. J., Bowman, J. R., et al. (2011). Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomaterialia, 71, 203–215.

    Article  Google Scholar 

  40. Sun Y, Yong, KM, Villa-Diaz, LG, et al. (2014) Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nature Materials.

Download references

Conflict of Interest

The work in this manuscript was funded by the NIH Common Fund, National Institutes of Health, Bethesda, USA. The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasir Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.S., Rao, M. & Malik, N. Motor Neuron Differentiation from Pluripotent Stem Cells and Other Intermediate Proliferative Precursors that can be Discriminated by Lineage Specific Reporters. Stem Cell Rev and Rep 11, 194–204 (2015). https://doi.org/10.1007/s12015-014-9541-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9541-0

Keywords

Navigation