Advertisement

Stem Cell Reviews and Reports

, Volume 10, Issue 6, pp 820–829 | Cite as

Establishment of Human cell Type-Specific iPS cells with Enhanced Chondrogenic Potential

  • Rosa M. GuzzoEmail author
  • Vanessa Scanlon
  • Archana Sanjay
  • Ren-He Xu
  • Hicham Drissi
Article

Abstract

The propensity of induced pluripotent stem (iPS) cells to differentiate into specific lineages may be influenced by a number of factors, including the selection of the somatic cell type used for reprogramming. Herein we report the generation of new iPS cells, which we derived from human articular chondrocytes and from cord blood mononucleocytes via lentiviral-mediated delivery of Oct4, Klf4, Sox2, and cMyc. Molecular, cytochemical, and cytogenic analyses confirmed the acquisition of hallmark features of pluripotency, as well as the retention of normal karyotypes following reprogramming of both the human articular chondrocytes (AC) and the cord blood (CB) cells. In vitro and in vivo functional analyses formally established the pluripotent differentiation capacity of all cell lines. Chondrogenic differentiation assays comparing iPS cells derived from AC, CB, and a well established dermal fibroblast cell line (HDFa-Yk26) identified enhanced proteoglycan-rich matrix formation and cartilage-associated gene expression from AC-derived iPS cells. These findings suggest that the tissue of origin may impact the fate potential of iPS cells for differentiating into specialized cell types, such as chondrocytes. Thus, we generated new cellular tools for the identification of inherent features driving high chondrogenic potential of reprogrammed cells.

Keywords

Human induced pluripotent stem cells Chondrogenic differentiation Reprogramming Articular cartilage Cord blood 

List of Abbreviations

AC

articular chondrocytes

ALP

alkaline phosphatase

BMP-2

bone morphogenetic protein-2

CB

cord blood

DMEM

Dulbecco’s modified Eagle’s medium

EB

embryoid bodies

ESC

embryonic stem cell

iPS cells

induced pluripotent stem cells

MEFs

mouse embryonic fibroblasts

SF

skin fibroblasts

SR

serum replacement

Notes

Acknowledgments

This work was funded by the State of Connecticut Stem Cell Seed Grants (#10SCA36 and #13-SCA-UCHC-11 to RMG) and the State of Connecticut Established Investigator Grant (#11SCB08 to HD). The authors are grateful for the stem cell services and technical support provided by Leann Crandall, Tiwanna Johnson and Jung Park from the University of Connecticut Stem Cell Core and Chromosome Facility We also acknowledge Dr. Judy Brown and Dr. Rachel O’Neil from the University of Connecticut Induced Pluripotent Stem Cell Core and Chromosome Facility for their expertise with chromosome analyses. The authors have no conflict of interest to declare.

Conflicts of Interest

None.

References

  1. 1.
    Nakayama N. & Umeda K. (2011) From Pluripotent Stem Cells to Lineage-Specific Chondrocytes: Essential Signaling and Cellular Intermediates. Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis, ed Atwood C (InTech).Google Scholar
  2. 2.
    Robinton, D. A., & Daley, G. Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature, 481, 295–305.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wu, S. M., & Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 13, 497–505.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Long, F., & Ornitz, D. M. (2013). Development of the endochondral skeleton. Cold Spring Harbor Perspectives in Biology, 5, a008334.PubMedCrossRefGoogle Scholar
  5. 5.
    Lefebvre, V., & Smits, P. (2005). Transcriptional control of chondrocyte fate and differentiation. Birth Defects Research. Part C, Embryo Today, 75(3), 200–212.CrossRefGoogle Scholar
  6. 6.
    Wuelling, M., & Vortkamp, A. (2010). Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatric Nephrology (Berlin, Germany), 25, 625–631.CrossRefGoogle Scholar
  7. 7.
    Guzzo, R. M., Gibson, J., Xu, R. H., Lee, F. Y., & Drissi, H. (2013). Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells. Journal of Cellular Biochemistry, 114, 480–490.PubMedCrossRefGoogle Scholar
  8. 8.
    Toh, W. S., Lee, E. H., Richards, M., & Cao, T. (2010). In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods in Molecular Biology, 584, 317–331.PubMedCrossRefGoogle Scholar
  9. 9.
    Craft, A. M., Ahmed, N., Rockel, J. S., et al. (2013). Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development (Cambridge, England), 140, 2597–2610.CrossRefGoogle Scholar
  10. 10.
    Oldershaw, R. A., Baxter, M. A., Lowe, E. T., et al. (2010). Directed differentiation of human embryonic stem cells toward chondrocytes. Nature Biotechnology, 28, 1187–1194.PubMedCrossRefGoogle Scholar
  11. 11.
    Diekman, B. O., Christoforou, N., Willard, V. P., et al. (2012). Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 19172–19177.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Onyekwelu, I., Goldring, M. B., & Hidaka, C. (2009). Chondrogenesis, joint formation, and articular cartilage regeneration. Journal of Cellular Biochemistry, 107, 383–392.PubMedCrossRefGoogle Scholar
  13. 13.
    Koyama, N., Miura, M., Nakao, K., et al. (2013). Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells and Development, 22, 102–113.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, Y., Goldberg, A. J., Dennis, J. E., Gronowicz, G. A., & Kuhn, L. T. (2012). One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One, 7(3), e33225.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Abyzov, A., Mariani, J., Palejev, D., et al. (2012). Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 492, 438–442.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Zhang, X. B. (2013). Cellular reprogramming of human peripheral blood cells. Genomics, Proteomics & Bioinformatics, 11, 264–274.CrossRefGoogle Scholar
  17. 17.
    Meng, X., Neises, A., Su, R. J., et al. (2009). Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Molecular Therapy, 20, 408–416.CrossRefGoogle Scholar
  18. 18.
    Haase, A., Olmer, R., Schwanke, K., et al. (2009). Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell, 5, 434–441.PubMedCrossRefGoogle Scholar
  19. 19.
    Bar-Nur, O., Russ, H. A., Efrat, S., & Benvenisty, N. (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet Beta cells. Cell Stem Cell, 9, 17–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, K., Doi, A., Wen, B., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature, 467, 285–290.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Kim, K., Zhao, R., Doi, A., et al. (2011). Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 29, 1117–1119.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Polo, J. M., Liu, S., Figueroa, M. E., et al. (2010). Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 28, 848–855.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sullivan, G. J., Bai, Y., Fletcher, J., & Wilmut, I. (2010). Induced pluripotent stem cells: epigenetic memories and practical implications. Molecular Human Reproduction, 16, 880–885.PubMedCrossRefGoogle Scholar
  24. 24.
    Ohi, Y., Qin, H., Hong, C., et al. (2011). Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nature Cell Biology, 13, 541–549.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Xu, H., Yi, B. A., Wu, H., et al. (2011). Highly efficient derivation of ventricular cardiomyocytes from induced pluripotent stem cells with a distinct epigenetic signature. Cell Research, 22, 142–154.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Shao, K., Koch, C., Gupta, M. K., et al. (2012). Induced pluripotent mesenchymal stromal cell clones retain donor-derived differences in DNA methylation profiles. Molecular Therapy, 21, 240–250.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Rizzi, R., Di Pasquale, E., Portararo, P., et al. (2012). Post-natal cardiomyocytes can generate iPS cells with an enhanced capacity toward cardiomyogenic re-differentation. Cell Death and Differentiation, 19, 1162–1174.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Pfaff, N., Lachmann, N., Kohlscheen, S., et al. (2012). Efficient hematopoietic redifferentiation of induced pluripotent stem cells derived from primitive murine bone marrow cells. Stem Cells and Development, 21, 689–701.PubMedCrossRefGoogle Scholar
  29. 29.
    Ghosh, Z., Wilson, K. D., Wu, Y., Hu, S., Quertermous, T., & Wu, J. C. (2010). Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One, 5, e8975.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Lee, S. B., Seo, D., Choi, D., et al. (2012). Contribution of hepatic lineage stage-specific donor memory to the differential potential of induced mouse pluripotent stem cells. Stem Cells, 30, 997–1007.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Sommer, C. A., Stadtfeld, M., Murphy, G. J., Hochedlinger, K., Kotton, D. N., & Mostoslavsky, G. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells, 27, 543–549.PubMedCrossRefGoogle Scholar
  32. 32.
    Martins-Taylor, K., Nisler, B. S., Taapken, S. M., et al. (2011). Recurrent copy number variations in human induced pluripotent stem cells. Nature Biotechnology, 29, 488–491.PubMedCrossRefGoogle Scholar
  33. 33.
    Muller, F. J., Schuldt, B. M., Williams, R., et al. (2011). A bioinformatic assay for pluripotency in human cells. Nature Methods, 8, 315–317.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Muller F.J., Brandl B., Loring J.F. (2008) Assessment of human pluripotent stem cells with PluriTest. In: StemBook. Cambridge, MA; 2008.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rosa M. Guzzo
    • 1
    • 3
    Email author
  • Vanessa Scanlon
    • 1
  • Archana Sanjay
    • 1
  • Ren-He Xu
    • 2
    • 3
    • 4
  • Hicham Drissi
    • 1
    • 2
    • 3
  1. 1.Department of Orthopaedic SurgeryUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of Genetics and Developmental BiologyUniversity of Connecticut Health CenterFarmingtonUSA
  3. 3.Stem Cell InstituteUniversity of Connecticut Health CenterFarmingtonUSA
  4. 4.Faculty of Health SciencesUniversity of MacauTaipaChina

Personalised recommendations