Stem Cell Reviews and Reports

, Volume 10, Issue 3, pp 417–428 | Cite as

Platelet-Rich Plasma (PRP) Promotes Fetal Mesenchymal Stem/Stromal Cell Migration and Wound Healing Process

  • Maria G. RoubelakisEmail author
  • Ourania Trohatou
  • Apostolos Roubelakis
  • Evgenia Mili
  • Ioannis Kalaitzopoulos
  • Georgios Papazoglou
  • Κalliopi I. Pappa
  • Nicholas P. Anagnou


Numerous studies have shown the presence of high levels of growth factors during the process of healing. Growth factors act by binding to the cell surface receptors and contribute to the subsequent activation of signal transduction mechanisms. Wound healing requires a complex of biological and molecular events that includes attraction and proliferation of different type of cells to the wound site, differentiation and angiogenesis. More specifically, migration of various cell types, such as endothelial cells and their precursors, mesenchymal stem/stromal cells (MSCs) or skin fibroblasts (DFs) plays an important role in the healing process. In recent years, the application of platelet rich plasma (PRP) to surgical wounds and skin ulcerations is becoming more frequent, as it is believed to accelerate the healing process. The local enrichment of growth factors at the wound after PRP application causes a stimulation of tissue regeneration. Herein, we studied: (i) the effect of autologous PRP in skin ulcers of patients of different aetiology, (ii) the proteomic profile of PRP, (iii) the migration potential of amniotic fluid MSCs and DFs in the presence of PRP extract in vitro, (iv) the use of the PRP extract as a substitute for serum in cultivating AF-MSCs. Considering its easy access, PRP may provide a valuable tool in multiple therapeutic approaches.


PRP AF-MSCs Healing Cell migration 



This research was supported by Grant PENED No. 03ED 652 from the Greek Secretariat of Research and Technology and the European Union and by Grant Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework Research Funding Program: Heracleitus II, Investing in Knowledge Society through the European Social Fund. We are grateful to Professor Suzanne M. Watt (NDCLS, University of Oxford) for providing DF samples.

Disclosure of Potential Conflicts of Interest

The authors indicate no potential conflicts of interest.

Authorship Contribution

M.G. Roubelakis: Conception and design, experimental procedures, data analysis, data approval and manuscript writing.

O. Trohatou: Experimental procedures, data analysis and manuscript reviewing

A. Roubelakis: PRP samples provision, patient treatment and surveillance, data analysis and manuscript reviewing.

E. Mili: PRP collection, patient treatment, experimental procedures, data analysis

I. Kalaitzopoulos: PRP samples provision, patient treatment and surveillance

Georgios Papazoglou: Patient treatment and surveillance

K.I. Pappa: Amniotic fluid samples provision

N.P. Anagnou: Financial support and manuscript reviewing


  1. 1.
    Abdulrazzak, H., Moschidou, D., Jones, G., & Guillot, P. V. (2010). Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. Journal of the Royal Society Interface, 7(Suppl 6), S689–706.PubMedCentralCrossRefGoogle Scholar
  2. 2.
    Abiko, Y., Arai, J., Matsuzawa, K., Inoue, T., Shimono, M., & Kaku, T. (1996). Human gingival fibroblast migration promoted by platelet-derived growth factor on titanium is correlated with release of urokinase type plasminogen activator. The Bulletin of Tokyo Dental College, 37, 113–118.PubMedGoogle Scholar
  3. 3.
    Amable, P. R., Carias, R. B., Teixeira, M. V., da Cruz Pacheco, I., Correa do Amaral, R. J., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Research & Therapy, 4, 67.CrossRefGoogle Scholar
  4. 4.
    Anitua, E., Muruzabal, F., Alcalde, I., Merayo-Lloves, J. & Orive, G. (2013) Plasma Rich in Growth Factors (PRGF-Endoret) stimulates corneal wound healing and reduces haze formation after PRK surgery. Exp Eye ResGoogle Scholar
  5. 5.
    Bitsika, V., Roubelakis, M.G., Zagoura, D., Trohatou, O., Makridakis, M., Pappa, K.I., Marini, F.C., Vlahou, A. & Anagnou, N.P. (2011) Human Amniotic Fluid-Derived Mesenchymal Stem Cells As Therapeutic Vehicles: A Novel Approach For the Treatment of Bladder Cancer. Stem Cells DevGoogle Scholar
  6. 6.
    Bitsika, V., Vlahou, A., & Roubelakis, M. G. (2013). Fetal mesenchymal stem cells in cancer therapy. Current Stem Cell Research & Therapy, 8, 133–143.CrossRefGoogle Scholar
  7. 7.
    Blume, A., Berger, M., Benie, A. J., Peters, T., & Hinderlich, S. (2008). Characterization of ligand binding to N-acetylglucosamine kinase studied by STD NMR. Biochemistry, 47, 13138–13146.PubMedCrossRefGoogle Scholar
  8. 8.
    Brem, H., Balledux, J., Bloom, T., Kerstein, M. D., & Hollier, L. (2000). Healing of diabetic foot ulcers and pressure ulcers with human skin equivalent: a new paradigm in wound healing. Archives of Surgery, 135, 627–634.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruno, S., Grange, C., Deregibus, M. C., Calogero, R. A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., Tetta, C., & Camussi, G. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology, 20, 1053–1067.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Campagnoli, C., Bellantuono, I., Kumar, S., Fairbairn, L. J., Roberts, I., & Fisk, N. M. (2002). High transduction efficiency of circulating first trimester fetal mesenchymal stem cells: potential targets for in utero ex vivo gene therapy. BJOG, 109, 952–954.PubMedCrossRefGoogle Scholar
  11. 11.
    De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., Mostoslavsky, G., Serre, A. C., Snyder, E. Y., Yoo, J. J., Furth, M. E., Soker, S., & Atala, A. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–106.PubMedCrossRefGoogle Scholar
  12. 12.
    Delorme, B., Ringe, J., Pontikoglou, C., Gaillard, J., Langonne, A., Sensebe, L., Noel, D., Jorgensen, C., Haupl, T., & Charbord, P. (2009). Specific lineage-priming of bone marrow mesenchymal stem cells provides the molecular framework for their plasticity. Stem Cells, 27, 1142–1151.PubMedCrossRefGoogle Scholar
  13. 13.
    Doucet, C., Ernou, I., Zhang, Y., Llense, J. R., Begot, L., Holy, X., & Lataillade, J. J. (2005). Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. Journal of Cellular Physiology, 205, 228–236.PubMedCrossRefGoogle Scholar
  14. 14.
    Driver, V. R., Hanft, J., Fylling, C. P., & Beriou, J. M. (2006). A prospective, randomized, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic foot ulcers. Ostomy/Wound Management, 52, 68–70. 72, 74 passim.PubMedGoogle Scholar
  15. 15.
    Dufour, A., Zucker, S., Sampson, N. S., Kuscu, C., & Cao, J. (2010). Role of matrix metalloproteinase-9 dimers in cell migration: design of inhibitory peptides. Journal of Biological Chemistry, 285, 35944–35956.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    English, K., French, A., & Wood, K. J. (2011). Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell, 7, 431–442.CrossRefGoogle Scholar
  17. 17.
    Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. Lancet, 366, 1736–1743.PubMedCrossRefGoogle Scholar
  18. 18.
    Freinkel, R. K., & Woodley, D. T. (2001). The Biology of Skin. New York, London: The Parthenon Publishing Group.Google Scholar
  19. 19.
    Gazouli, M., Roubelakis, M. G., Theodoropoulos, G. E., Papailiou, J., Vaiopoulou, A., Pappa, K. I., Nikiteas, N., & Anagnou, N. P. (2011). OCT4 spliced variant OCT4B1 is expressed in human colorectal cancer. Molecular Carcinogenesis, 51, 165–173.PubMedCrossRefGoogle Scholar
  20. 20.
    Hocking, A. M., & Gibran, N. S. (2010). Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Experimental Cell Research, 316, 2213–2219.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    In’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., Noort, W. A., Claas, F. H., Willemze, R., Fibbe, W. E., & Kanhai, H. H. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102, 1548–1549.CrossRefGoogle Scholar
  22. 22.
    Javazon, E. H., Keswani, S. G., Badillo, A. T., Crombleholme, T. M., Zoltick, P. W., Radu, A. P., Kozin, E. D., Beggs, K., Malik, A. A., & Flake, A. W. (2007). Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells. Wound Repair and Regeneration, 15, 350–359.PubMedCrossRefGoogle Scholar
  23. 23.
    Kim, J. Y., Song, S. H., Kim, K. L., Ko, J. J., Im, J. E., Yie, S. W., Ahn, Y. K., Kim, D. K., & Suh, W. (2010). Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplantation, 19, 1635–1644.PubMedCrossRefGoogle Scholar
  24. 24.
    Klemmt, P. A., Vafaizadeh, V., & Groner, B. (2011). The potential of amniotic fluid stem cells for cellular therapy and tissue engineering. Expert Opinion on Biological Therapy, 11, 1297–1314.PubMedCrossRefGoogle Scholar
  25. 25.
    Knighton, D. R., Ciresi, K., Fiegel, V. D., Schumerth, S., Butler, E., & Cerra, F. (1990). Stimulation of repair in chronic, nonhealing, cutaneous ulcers using platelet-derived wound healing formula. Surgery, Gynecology & Obstetrics, 170, 56–60.Google Scholar
  26. 26.
    Kuo, Y. R., Wang, C. T., Cheng, J. T., Wang, F. S., Chiang, Y. C., & Wang, C. J. (2011). Bone marrow-derived mesenchymal stem cells enhanced diabetic wound healing through recruitment of tissue regeneration in a rat model of streptozotocin-induced diabetes. Plastic and Reconstructive Surgery, 128, 872–880.PubMedCrossRefGoogle Scholar
  27. 27.
    Kwon, D. S., Gao, X., Liu, Y. B., Dulchavsky, D. S., Danyluk, A. L., Bansal, M., Chopp, M., McIntosh, K., Arbab, A. S., Dulchavsky, S. A., & Gautam, S. C. (2008). Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. International Wound Journal, 5, 453–463.PubMedCrossRefGoogle Scholar
  28. 28.
    Lin, C. D., Allori, A. C., Macklin, J. E., Sailon, A. M., Tanaka, R., Levine, J. P., Saadeh, P. B., & Warren, S. M. (2008). Topical lineage-negative progenitor-cell therapy for diabetic wounds. Plastic and Reconstructive Surgery, 122, 1341–1351.PubMedCrossRefGoogle Scholar
  29. 29.
    Makridakis, M., Gagos, S., Petrolekas, A., Roubelakis, M. G., Bitsika, V., Stravodimos, K., Pavlakis, K., Anagnou, N. P., Coleman, J., & Vlahou, A. (2009). Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer. Proteomics, 9, 287–298.PubMedCrossRefGoogle Scholar
  30. 30.
    Marrotte, E. J., Chen, D. D., Hakim, J. S., & Chen, A. F. (2010). Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice. Journal of Clinical Investigation, 120, 4207–4219.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Martin-Rendon, E., Sweeney, D., Lu, F., Girdlestone, J., Navarrete, C., & Watt, S. M. (2008). 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sanguinis, 95, 137–148.PubMedCrossRefGoogle Scholar
  32. 32.
    Martin, P. (1997). Wound healing–aiming for perfect skin regeneration. Science, 276, 75–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Martinez-Zapata, M. J., Marti-Carvajal, A., Sola, I., Bolibar, I., Angel Exposito, J., Rodriguez, L., & Garcia, J. (2009). Efficacy and safety of the use of autologous plasma rich in platelets for tissue regeneration: a systematic review. Transfusion, 49, 44–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Mazzucco, L., Medici, D., Serra, M., Panizza, R., Rivara, G., Orecchia, S., Libener, R., Cattana, E., Levis, A., Betta, P. G., & Borzini, P. (2004). The use of autologous platelet gel to treat difficult-to-heal wounds: a pilot study. Transfusion, 44, 1013–1018.PubMedCrossRefGoogle Scholar
  35. 35.
    McAleer, J. P., Sharma, S., Kaplan, E. M., & Persich, G. (2006). Use of autologous platelet concentrate in a nonhealing lower extremity wound. Advances in Skin & Wound Care, 19, 354–363.CrossRefGoogle Scholar
  36. 36.
    Mirabella, T., Hartinger, J., Lorandi, C., Gentili, C., van Griensven, M., & Cancedda, R. (2012). Proangiogenic soluble factors from amniotic fluid stem cells mediate the recruitment of endothelial progenitors in a model of ischemic fasciocutaneous flap. Stem Cells and Development, 21, 2179–2188.PubMedCrossRefGoogle Scholar
  37. 37.
    Morigi, M., Rota, C., Montemurro, T., Montelatici, E., Lo Cicero, V., Imberti, B., Abbate, M., Zoja, C., Cassis, P., Longaretti, L., Rebulla, P., Introna, M., Capelli, C., Benigni, A., Remuzzi, G., & Lazzari, L. (2011). Life-sparing effect of human cord blood-mesenchymal stem cells in experimental acute kidney injury. Stem Cells, 28, 513–522.Google Scholar
  38. 38.
    Mosna, F., Sensebe, L., & Krampera, M. (2011). Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells and Development, 19, 1449–1470.CrossRefGoogle Scholar
  39. 39.
    Murphy, M. B., Blashki, D., Buchanan, R. M., Yazdi, I. K., Ferrari, M., Simmons, P. J., & Tasciotti, E. (2012). Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials, 33, 5308–5316.PubMedCrossRefGoogle Scholar
  40. 40.
    Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschlager, M. (2003). Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction, 18, 1489–1493.PubMedCrossRefGoogle Scholar
  41. 41.
    Roubelakis, M. G. (2013). Therapeutic potential of fetal mesenchymal stem cells. Current Stem Cell Research & Therapy, 8, 115–116.CrossRefGoogle Scholar
  42. 42.
    Roubelakis, M. G., Bitsika, V., Zagoura, D., Trohatou, O., Pappa, K. I., Makridakis, M., Antsaklis, A., Vlahou, A., & Anagnou, N. P. (2010). In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. Journal of Cellular and Molecular Medicine, 15, 1896–1913.CrossRefGoogle Scholar
  43. 43.
    Roubelakis, M. G., Pappa, K. I., Bitsika, V., Zagoura, D., Vlahou, A., Papadaki, H. A., Antsaklis, A., & Anagnou, N. P. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells and Development, 16, 931–952.PubMedCrossRefGoogle Scholar
  44. 44.
    Roubelakis, M. G., Trohatou, O., & Anagnou, N. P. (2012). Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem Cells International, 2012, 107836.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Roubelakis, M. G., Tsaknakis, G., Pappa, K. I., Anagnou, N. P., & Watt, S. M. (2013). Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS One, 8, e54747.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Saldalamacchia, G., Lapice, E., Cuomo, V., De Feo, E., D’Agostino, E., Rivellese, A. A., & Vaccaro, O. (2004). A controlled study of the use of autologous platelet gel for the treatment of diabetic foot ulcers. Nutrition, Metabolism, and Cardiovascular Diseases, 14, 395–396.PubMedCrossRefGoogle Scholar
  47. 47.
    Schmidt, B. A., & Horsley, V. (2013). Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development, 140, 1517–1527.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England Journal of Medicine, 341, 738–746.PubMedCrossRefGoogle Scholar
  49. 49.
    Trohatou, O., Anagnou, N. P., & Roubelakis, M. G. (2013). Human amniotic fluid stem cells as an attractive tool for clinical applications. Current Stem Cell Research & Therapy, 8, 125–132.CrossRefGoogle Scholar
  50. 50.
    Troyer, D. L., & Weiss, M. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Tsai, M. S., Hwang, S. M., Tsai, Y. L., Cheng, F. C., Lee, J. L., & Chang, Y. J. (2006). Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biology of Reproduction, 74, 545–551.PubMedCrossRefGoogle Scholar
  52. 52.
    Tsai, M. S., Lee, J. L., Chang, Y. J., & Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19, 1450–1456.PubMedCrossRefGoogle Scholar
  53. 53.
    Tzeng, Y. S., Deng, S. C., Wang, C. H., Tsai, J. C., Chen, T. M., & Burnouf, T. (2013). Treatment of nonhealing diabetic lower extremity ulcers with skin graft and autologous platelet gel: a case series. BioMed Research International, 2013, 837620.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    van den Dolder, J., Mooren, R., Vloon, A. P., Stoelinga, P. J., & Jansen, J. A. (2006). Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells. Tissue Engineering, 12, 3067–3073.PubMedCrossRefGoogle Scholar
  55. 55.
    Volarevic, V., Arsenijevic, N., Lukic, M. L., & Stojkovic, M. (2011). Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells, 29, 5–10.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Wang, L., Zhang, Z. G., Zhang, R. L., Gregg, S. R., Hozeska-Solgot, A., LeTourneau, Y., Wang, Y., & Chopp, M. (2006). Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. Journal of Neuroscience, 26, 5996–6003.PubMedCrossRefGoogle Scholar
  57. 57.
    Wu, Y., Chen, L., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells, 25, 2648–2659.PubMedCrossRefGoogle Scholar
  58. 58.
    Yoon, B. S., Moon, J. H., Jun, E. K., Kim, J., Maeng, I., Kim, J. S., Lee, J. H., Baik, C. S., Kim, A., Cho, K. S., Lee, H. H., Whang, K. Y., & You, S. (2010). Secretory profiles and wound healing effects of human amniotic fluid-derived mesenchymal stem cells. Stem Cells and Development, 19, 887–902.PubMedCrossRefGoogle Scholar
  59. 59.
    Zagoura, D.S., Roubelakis, M.G., Bitsika, V., Trohatou, O., Pappa, K.I., Kapelouzou, A., Antsaklis, A. & Anagnou, N.P. (2011) Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. GutGoogle Scholar
  60. 60.
    Zagoura, D. S., Trohatou, O., Bitsika, V., Makridakis, M., Pappa, K. I., Vlahou, A., Roubelakis, M. G., & Anagnou, N. P. (2013). AF-MSCs fate can be regulated by culture conditions. Cell Death and Disease, 4, e571.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Zhou, B., Tsaknakis, G., Coldwell, K. E., Khoo, C. P., Roubelakis, M. G., Chang, C. H., Pepperell, E., & Watt, S. M. (2012). A novel function for the haemopoietic supportive murine bone marrow MS-5 mesenchymal stromal cell line in promoting human vasculogenesis and angiogenesis. British Journal of Haematology, 157, 299–311.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maria G. Roubelakis
    • 1
    • 2
    Email author
  • Ourania Trohatou
    • 1
    • 2
  • Apostolos Roubelakis
    • 3
    • 4
  • Evgenia Mili
    • 1
    • 5
  • Ioannis Kalaitzopoulos
    • 4
  • Georgios Papazoglou
    • 4
  • Κalliopi I. Pappa
    • 6
  • Nicholas P. Anagnou
    • 1
    • 2
  1. 1.Laboratory of BiologyUniversity of Athens, School of MedicineAthensGreece
  2. 2.Cell and Gene Therapy LaboratoryCenter of Basic Research II, Biomedical Research Foundation of the Academy of Athens (BRFAA)AthensGreece
  3. 3.Department of Cardiothoracic SurgerySouthampton University HospitalsSouthamptonUK
  4. 4.Department of SurgeryAmalia Fleming HospitalAthensGreece
  5. 5.Microbial and Biotechnology Unity, Department of BiologyUniversity of AthensAthensGreece
  6. 6.First Department of Obstetrics and GynecologyUniversity of Athens School of MedicineAthensGreece

Personalised recommendations