Stem Cell Reviews and Reports

, Volume 10, Issue 1, pp 44–59 | Cite as

Approaches for Neural Tissue Regeneration

  • Loïc Binan
  • Abdellah Ajji
  • Gregory De Crescenzo
  • Mario JolicoeurEmail author


There is currently no treatment for neurodegenerative diseases such as Parkinson’s or Alzheimer’s diseases. While spinal cord injury has no treatment either, nerve injuries are being treated with autologous grafts, a procedure that in turn translates into a loss of function in the donor area. The development of therapies for these pathologies has become urgent as population keeps on ageing. A promising direction of investigation is the use of regenerative techniques to re-grow healthy and functional tissue in the injured area. In this review article, various approaches currently investigated to promote neural regeneration are covered. Those include approaches based on (and many times combining) stem cell therapy, scaffolds made of hydrogel, electrospun fibers and conductive materials as well as the use of soluble or non-diffusible growth factors.


Nerve Spinal cord Stem cell Regeneration Biomaterial Scaffold Hydrogel Electrospinning Growth factor 



Authors wish to thank the National Sciences and Engineering Research Council of Canada (NSERC) and New World Laboratories Inc. for their financial support through a Research and Development Collaborative grant.

Conflict of Interest Statement

The authors indicate no potential conflict of interest.


  1. 1.
    Di Carlo, A. (2009). Human and economic burden of stroke. Age and Ageing, 38(1), 4–5.PubMedGoogle Scholar
  2. 2.
    Spinal cord injury facts and figures at a glance. Journal of Spinal Cord Medicine, 35(6), 480–481 (2012).Google Scholar
  3. 3.
    Ford, B. (2010). Parkinson’s disease Q & A, sixth edition.Google Scholar
  4. 4.
    May, M., Sobol, S. M., & Mester, S. J. (1991). Hypoglossal-facial nerve interpositional-jump graft for facial reanimation without tongue atrophy. Otolaryngology – Head and Neck Surgery, 104(6), 818–825.PubMedGoogle Scholar
  5. 5.
    Brooks, D. N., Weber, R. V., Chao, J. D., et al. (2012). Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery, 32(1), 1–14.PubMedGoogle Scholar
  6. 6.
    Dellon, A. L., & Mackinnon, S. E. (1988). An alternative to the classical nerve graft for the management of the short nerve gap. Plastic and Reconstructive Surgery, 82(5), 849–856.PubMedGoogle Scholar
  7. 7.
    Montastruc, J. L., Rascol, O., & Senard, J. M. (1999). Treatment of Parkinson’s disease should begin with a dopamine agonist. Movement Disord, 14(5), 725–730.PubMedGoogle Scholar
  8. 8.
    Sugaya, K., & Merchant, S. (2008). How to approach Alzheimer’s disease therapy using stem cell technologies. Journal of Alzheimer’s Disease, 15(2), 241–254.PubMedGoogle Scholar
  9. 9.
    Miller, R. H. (2006). The promise of stem cells for neural repair. Brain Research, 1091(1), 258–264.PubMedGoogle Scholar
  10. 10.
    Hwang, W., Alvarez-Buylla, A., & Lim, D. (2012). Glial nature of adult neural stem cells: neurogenic competence in adult astrocytes. In M. S. Rao, M. Carpenter, & M. C. Vemuri (Eds.), Neural development and stem cells (pp. 149–172). New York: Springer.Google Scholar
  11. 11.
    Pawitan, J. A. (2011). Prospect of cell therapy for Parkinson’s disease. Anat Cell Biol, 44(4), 256–264.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., & Nolta, J. A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regenerative Medicine, 5(6), 933–946.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Kassis, I., Grigoriadis, N., Gowda-Kurkalli, B., et al. (2008). Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Archives of Neurology, 65(6), 753–761.PubMedGoogle Scholar
  14. 14.
    Aizman, I., Tate, C. C., Mcgrogan, M., & Case, C. C. (2009). Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. Journal of Neuroscience Research, 87(14), 3198–3206.PubMedGoogle Scholar
  15. 15.
    Cummings, B. J., Uchida, N., Tamaki, S. J., et al. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14069–14074.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V. M., & Sanberg, P. R. (1998). Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Experimental Neurology, 149(2), 310–321.PubMedGoogle Scholar
  17. 17.
    Heine, W., Conant, K., Griffin, J. W., & Hoke, A. (2004). Transplanted neural stem cells promote axonal regeneration through chronically denervated peripheral nerves. Experimental Neurology, 189(2), 231–240.PubMedGoogle Scholar
  18. 18.
    Munoz, J. R., Stoutenger, B. R., Robinson, A. P., Spees, J. L., & Prockop, D. J. (2005). Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 18171–18176.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Hansmann, F., Pringproa, K., Ulrich, R, et al. (2012). Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and non-demyelinated central nervous system. Cell Transplant.Google Scholar
  20. 20.
    Sulaiman, O. A., & Gordon, T. (2002). Transforming growth factor-beta and forskolin attenuate the adverse effects of long-term Schwann cell denervation on peripheral nerve regeneration in vivo. Glia, 37(3), 206–218.PubMedGoogle Scholar
  21. 21.
    Kobayashi, N. R., Fan, D. P., Giehl, K. M., Bedard, A. M., Wiegand, S. J., & Tetzlaff, W. (1997). BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. Journal of Neuroscience, 17(24), 9583–9595.PubMedGoogle Scholar
  22. 22.
    Boyd, J. G., & Gordon, T. (2003). Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Experimental Neurology, 183(2), 610–619.PubMedGoogle Scholar
  23. 23.
    Grassi, M., & Grassi, G. (2005). Mathematical modelling and controlled drug delivery: matrix systems. Current Drug Delivery, 2(1), 97–116.PubMedGoogle Scholar
  24. 24.
    He, J., Zhong, C., & Mi, J. (2005). Modeling of drug release from bioerodible polymer matrices. Drug Delivery, 12(5), 251–259.PubMedGoogle Scholar
  25. 25.
    Sackett, C. K., & Narasimhan, B. (2011). Mathematical modeling of polymer erosion: consequences for drug delivery. International Journal of Pharmaceutics, 418(1), 104–114.PubMedGoogle Scholar
  26. 26.
    Xia, L., Wan, H., Hao, S. Y., et al. (2013). Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord. Chinese Medical Journal, 126(5), 909–917.PubMedGoogle Scholar
  27. 27.
    Tosi, G., Bortot, B., Ruozi, B., et al. (2013). Potential use of polymeric nanoparticles for drug delivery across the blood–brain barrier. Current Medicinal Chemistry. Google Scholar
  28. 28.
    Caicco, M. J., Cooke, M. J., Wang, Y., Tuladhar, A., Morshead, C. M., & Shoichet, M. S. (2013). A hydrogel composite system for sustained epi-cortical delivery of Cyclosporin A to the brain for treatment of stroke. Journal of Controlled Release, 166(3), 197–202.PubMedGoogle Scholar
  29. 29.
    Han, J., Lazarovici, P., Pomerantz, C., Chen, X., Wei, Y., & Lelkes, P. I. (2011). Co-electrospun blends of PLGA, gelatin, and elastin as potential nonthrombogenic scaffolds for vascular tissue engineering. Biomacromolecules, 12(2), 399–408.PubMedGoogle Scholar
  30. 30.
    Wang, Y., Wei, Y. T., Zu, Z. H., et al. (2011). Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells. Pharmaceutical Research, 28(6), 1406–1414.PubMedGoogle Scholar
  31. 31.
    Tzeng, S. Y., & Lavik, E. B. (2010). Photopolymerizable nanoarray hydrogels deliver CNTF and promote differentiation of neural stem cells. Soft Matter, 6(10), 2208–2215.Google Scholar
  32. 32.
    Bertram, J. P., Rauch, M. F., Chang, K., & Lavik, E. B. (2010). Using polymer chemistry to modulate the delivery of neurotrophic factors from degradable microspheres: delivery of BDNF. Pharmaceutical Research, 27(1), 82–91.PubMedGoogle Scholar
  33. 33.
    Han, N., Johnson, J., Lannutti, J. J., & Winter, J. O. (2012). Hydrogel-electrospun fiber composite materials for hydrophilic protein release. Journal of Controlled Release, 158(1), 165–170.PubMedGoogle Scholar
  34. 34.
    Puppi, D., Piras, A. M., Detta, N., Dinucci, D., & Chiellini, F. (2010). Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid. Acta Biomaterialia, 6(4), 1258–1268.PubMedGoogle Scholar
  35. 35.
    Wang, C. Y., Liu, J. J., Fan, C. Y., Mo, X. M., Ruan, H. J., & Li, F. F. (2012). The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. Journal of Biomaterials Science, Polymer Edition, 23(1–4), 167–184.Google Scholar
  36. 36.
    Seyednejad, H., Ji, W., Yang, F., et al. (2012). Coaxially electrospun scaffolds based on hydroxyl-functionalized poly(epsilon-caprolactone) and loaded with VEGF for tissue engineering applications. Biomacromolecules, 13(11), 3650–3660.PubMedGoogle Scholar
  37. 37.
    Wang, Y., Cooke, M. J., Morshead, C. M., & Shoichet, M. S. (2012). Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials, 33(9), 2681–2692.PubMedGoogle Scholar
  38. 38.
    Gardette, R., Courtois, M., & Bisconte, J. C. (1982). Prenatal development of mouse central nervous structures: time of neuron origin and gradients of neuronal production. A radioautographic study. Journal für Hirnforschung, 23(4), 415–431.PubMedGoogle Scholar
  39. 39.
    Altman, J., & Bayer, S. A. (1979). Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. Journal of Comparative Neurology, 188(3), 455–471.PubMedGoogle Scholar
  40. 40.
    Luo, L., & Flanagan, J. G. (2007). Development of continuous and discrete neural maps. Neuron, 56(2), 284–300.PubMedGoogle Scholar
  41. 41.
    Gillespie, L. N., Clark, G. M., Bartlett, P. F., & Marzella, P. L. (2003). BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects. Journal of Neuroscience Research, 71(6), 785–790.PubMedGoogle Scholar
  42. 42.
    Keenan, T. M., Grinager, J. R., Procak, A. A., & Svendsen, C. N. (2012). In vitro localization of human neural stem cell neurogenesis by engineered FGF-2 gradients. Integr Biol (Camb), 4(12), 1522–1531.Google Scholar
  43. 43.
    Dodla, M. C., & Bellamkonda, R. V. (2008). Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials, 29(1), 33–46.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Shi, J., Wang, L., Zhang, F., et al. (2010). Incorporating protein gradient into electrospun nanofibers as scaffolds for tissue engineering. ACS Applied Materials & Interfaces, 2(4), 1025–1030.Google Scholar
  45. 45.
    Kunze, A., Valero, A., Zosso, D., & Renaud, P. (2011). Synergistic NGF/B27 gradients position synapses heterogeneously in 3D micropatterned neural cultures. PLoS One, 6(10), e26187.PubMedCentralPubMedGoogle Scholar
  46. 46.
    Krewson, C. E., Klarman, M. L., & Saltzman, W. M. (1995). Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Research, 680(1–2), 196–206.PubMedGoogle Scholar
  47. 47.
    Saltzman, W. M., Mak, M. W., Mahoney, M. J., Duenas, E. T., & Cleland, J. L. (1999). Intracranial delivery of recombinant nerve growth factor: release kinetics and protein distribution for three delivery systems. Pharmaceutical Research, 16(2), 232–240.PubMedGoogle Scholar
  48. 48.
    Mahoney, M. J., Krewson, C., Miller, J., & Saltzman, W. M. (2006). Impact of cell type and density on nerve growth factor distribution and bioactivity in 3-dimensional collagen gel cultures. Tissue Engineering, 12(7), 1915–1927.PubMedGoogle Scholar
  49. 49.
    Sirianni, R. W., Olausson, P., Chiu, A. S., Taylor, J. R., & Saltzman, W. M. (2010). The behavioral and biochemical effects of BDNF containing polymers implanted in the hippocampus of rats. Brain Research, 1321, 40–50.PubMedGoogle Scholar
  50. 50.
    Shanbhag, M. S., Lathia, J. D., Mughal, M. R., et al. (2010). Neural progenitor cells grown on hydrogel surfaces respond to the product of the transgene of encapsulated genetically engineered fibroblasts. Biomacromolecules. Google Scholar
  51. 51.
    Dey, N. D., Bombard, M. C., Roland, B. P., et al. (2010). Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behavioural Brain Research, 214(2), 193–200.PubMedGoogle Scholar
  52. 52.
    Zeng, X., Cai, J., Chen, J., et al. (2004). Dopaminergic differentiation of human embryonic stem cells. Stem Cells, 22(6), 925–940.PubMedGoogle Scholar
  53. 53.
    Tuszynski, M. H., Thal, L., Pay, M., et al. (2005). A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nature Medicine, 11(5), 551–555.PubMedGoogle Scholar
  54. 54.
    Sharp, K. G., Dickson, A. R., Marchenko, S. A., et al. (2012). Salmon fibrin treatment of spinal cord injury promotes functional recovery and density of serotonergic innervation. Experimental Neurology, 235(1), 345–356.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Woerly, S., Doan, V. D., Sosa, N., De Vellis, J., & Espinosa-Jeffrey, A. (2004). Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. Journal of Neuroscience Research, 75(2), 262–272.PubMedGoogle Scholar
  56. 56.
    Kwak, Y. D., Brannen, C. L., Qu, T., et al. (2006). Amyloid precursor protein regulates differentiation of human neural stem cells. Stem Cells and Development, 15(3), 381–389.PubMedGoogle Scholar
  57. 57.
    Park, J., Lim, E., Back, S., Na, H., Park, Y., & Sun, K. (2010). Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. Journal of Biomedical Materials Research. Part A, 93(3), 1091–1099.PubMedGoogle Scholar
  58. 58.
    Yu, L., & Ding, J. (2008). Injectable hydrogels as unique biomedical materials. Chemical Society Reviews, 37(8), 1473–1481.PubMedGoogle Scholar
  59. 59.
    Rickett, T. A., Amoozgar, Z., Tuchek, C. A., Park, J., Yeo, Y., & Shi, R. (2011). Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules, 12(1), 57–65.PubMedGoogle Scholar
  60. 60.
    Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced Materials, 18, 1345–1360.Google Scholar
  61. 61.
    Zuidema, J. M., Pap, M. M., Jaroch, D. B., Morrison, F. A., & Gilbert, R. J. (2011). Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomaterialia, 7(4), 1634–1643.PubMedGoogle Scholar
  62. 62.
    Banerjee, A., Arha, M., Choudhary, S., et al. (2009). The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials, 30(27), 4695–4699.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Yi, X., Jin, G., Tian, M., Mao, W., & Qin, J. (2011). Porous chitosan scaffold and ngf promote neuronal differentiation of neural stem cells in vitro. Neuro Endocrinology Letters, 32(5), 705–710.PubMedGoogle Scholar
  64. 64.
    Pfister, L. A., Papaloizos, M., Merkle, H. P., & Gander, B. (2007). Hydrogel nerve conduits produced from alginate/chitosan complexes. Journal of Biomedical Materials Research. Part A, 80(4), 932–937.PubMedGoogle Scholar
  65. 65.
    Macaya, D., & Spector, M. (2012). Injectable hydrogel materials for spinal cord regeneration: a review. Biomedical Materials, 7(1), 012001.PubMedGoogle Scholar
  66. 66.
    Song, B., Song, J., Zhang, S., et al. (2012). Sustained local delivery of bioactive nerve growth factor in the central nervous system via tunable diblock copolypeptide hydrogel depots. Biomaterials, 33(35), 9105–9116.PubMedGoogle Scholar
  67. 67.
    Wang, Y., Qi, F., Zhu, S., et al. (2013). A synthetic oxygen carrier in fibrin matrices promotes sciatic nerve regeneration in rats. Acta Biomaterialia.Google Scholar
  68. 68.
    Perale, G., Rossi, F., Santoro, M., et al. (2012). Multiple drug delivery hydrogel system for spinal cord injury repair strategies. Journal of Controlled Release, 159(2), 271–280.PubMedGoogle Scholar
  69. 69.
    Woerly, S., Pinet, E., De Robertis, L., et al. (1998). Heterogeneous PHPMA hydrogels for tissue repair and axonal regeneration in the injured spinal cord. Journal of Biomaterials Science, Polymer Edition, 9(7), 681–711.Google Scholar
  70. 70.
    Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2–3), 151–160.Google Scholar
  71. 71.
    Ramakrishna, S. (2005). An introduction to electrospinning and nanofibers. World Scientific Publishing Company. Google Scholar
  72. 72.
    Alhosseini, S. N., Moztarzadeh, F., Mozafari, M., et al. (2012). Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. International Journal of Nanomedicine, 7, 25–34.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Zong, X., Bien, H., Chung, C. Y., et al. (2005). Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 26(26), 5330–5338.PubMedGoogle Scholar
  74. 74.
    Boland, E. D., Wnek, G. E., Simpson, D. G., Pawlowski, K. J., & Bowlin, G. L. (2001). Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. Journal of Macromolecular Science, Part A, 38(12), 1231–1243.Google Scholar
  75. 75.
    Subramanian, A., Krishnan, U. M., & Sethuraman, S. (2011). Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomedical Materials, 6(2), 025004.PubMedGoogle Scholar
  76. 76.
    Ma, Z., Lan, Z., Matsuura, T., & Ramakrishna, S. (2009). Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(29), 3686–3694.PubMedGoogle Scholar
  77. 77.
    Yao, L., O’brien, N., Windebank, A., & Pandit, A. (2009). Orienting neurite growth in electrospun fibrous neural conduits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90(2), 483–491.Google Scholar
  78. 78.
    Christopherson, G. T., Song, H., & Mao, H. Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 30(4), 556–564.PubMedGoogle Scholar
  79. 79.
    Wang, J., Ye, R., Wei, Y., et al. (2012). The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. Journal of Biomedical Materials Research. Part A, 100(3), 632–645.PubMedGoogle Scholar
  80. 80.
    Corey, J. M., Gertz, C. C., Wang, B. S., et al. (2008). The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons. Acta Biomaterialia, 4(4), 863–875.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Nisbet, D. R., Rodda, A. E., Horne, M. K., Forsythe, J. S., & Finkelstein, D. I. (2009). Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials, 30(27), 4573–4580.PubMedGoogle Scholar
  82. 82.
    Koh, H. S., Yong, T., Chan, C. K., & Ramakrishna, S. (2008). Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials, 29(26), 3574–3582.PubMedGoogle Scholar
  83. 83.
    Kim, H. W., Yu, H. S., & Lee, H. H. (2008). Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. Journal of Biomedical Materials Research. Part A, 87(1), 25–32.PubMedGoogle Scholar
  84. 84.
    Han, N., Rao, S. S., Johnson, J., et al. (2011). Hydrogel-electrospun fiber mat composite coatings for neural prostheses. Front Neuroeng, 4, 2.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Huang, S.-H., Chien, T.-C., & Hung, K.-Y. (2011). Selective deposition of electrospun alginate-based nanofibers onto cell-repelling hydrogel surfaces for cell-based microarrays. Current Nanoscience, 7(2), 267–274.Google Scholar
  86. 86.
    Nakaji-Hirabayashi, T., Kato, K., & Iwata, H. (2012). Improvement of neural stem cell survival in collagen hydrogels by incorporating laminin-derived cell adhesive polypeptides. Bioconjugate Chemistry, 23(2), 212–221.PubMedGoogle Scholar
  87. 87.
    Han, Q., Sun, W., Lin, H., et al. (2009). Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Engineering. Part A, 15(10), 2927–2935.PubMedGoogle Scholar
  88. 88.
    Egawa, E. Y., Kato, K., Hiraoka, M., Nakaji-Hirabayashi, T., & Iwata, H. (2011). Enhanced proliferation of neural stem cells in a collagen hydrogel incorporating engineered epidermal growth factor. Biomaterials, 32(21), 4737–4743.PubMedGoogle Scholar
  89. 89.
    Gamez Sazo, R. E., Maenaka, K., Gu, W., Wood, P. M., & Bunge, M. B. (2012). Fabrication of growth factor- and extracellular matrix-loaded, gelatin-based scaffolds and their biocompatibility with Schwann cells and dorsal root ganglia. Biomaterials, 33(33), 8529–8539.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Wang, H., Zhao, Q., Zhao, W., Liu, Q., Gu, X., & Yang, Y. (2012). Repairing rat sciatic nerve injury by a nerve-growth-factor-loaded, chitosan-based nerve conduit. Biotechnology and Applied Biochemistry, 59(5), 388–394.PubMedGoogle Scholar
  91. 91.
    Yoo, H. S., Kim, T. G., & Park, T. G. (2009). Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 61(12), 1033–1042.PubMedGoogle Scholar
  92. 92.
    Cho, Y. I., Choi, J. S., Jeong, S. Y., & Yoo, H. S. (2010). Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomaterialia, 6(12), 4725–4733.PubMedGoogle Scholar
  93. 93.
    Horne, M. K., Nisbet, D. R., Forsythe, J. S., & Parish, C. L. (2010). Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells and Development, 19(6), 843–852.PubMedGoogle Scholar
  94. 94.
    Belisle, J. M., Correia, J. P., Wiseman, P. W., Kennedy, T. E., & Costantino, S. (2008). Patterning protein concentration using laser-assisted adsorption by photobleaching, LAPAP. Lab on a Chip, 8(12), 2164–2167.PubMedGoogle Scholar
  95. 95.
    Lin, H., Chen, B., Wang, B., Zhao, Y., Sun, W., & Dai, J. (2006). Novel nerve guidance material prepared from bovine aponeurosis. Journal of Biomedical Materials Research. Part A, 79(3), 591–598.PubMedGoogle Scholar
  96. 96.
    Cao, J., Sun, C., Zhao, H., et al. (2011). The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials, 32(16), 3939–3948.PubMedGoogle Scholar
  97. 97.
    Xie, J., Macewan, M. R., Ray, W. Z., Liu, W., Siewe, D. Y., & Xia, Y. (2010). Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano, 4(9), 5027–5036.PubMedCentralPubMedGoogle Scholar
  98. 98.
    Park, J. S., Yang, H. N., Woo, D. G., et al. (2012). Exogenous Nurr1 gene expression in electrically-stimulated human MSCs and the induction of neurogenesis. Biomaterials, 33(29), 7300–7308.PubMedGoogle Scholar
  99. 99.
    Huang, J., Lu, L., Zhang, J., et al. (2012). Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS One, 7(6), e39526.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Mckasson, M. J., Huang, L., & Robinson, K. R. (2008). Chick embryonic Schwann cells migrate anodally in small electrical fields. Experimental Neurology, 211(2), 585–587.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Xie, J., Macewan, M. R., Willerth, S. M., et al. (2009). Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Advanced Functional Materials, 19(14), 2312–2318.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325–4335.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Lee, J. Y., Bashur, C. A., Milroy, C. A., Forciniti, L., Goldstein, A. S., & Schmidt, C. E. (2012). Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Transactions on Nanobioscience, 11(1), 15–21.PubMedGoogle Scholar
  104. 104.
    Wang, S., Zhao, Y., Shen, M., & Shi, X. (2012). Electrospun hybrid nanofibers doped with nanoparticles or nanotubes for biomedical applications. Therapeutic Delivery, 3(10), 1155–1169.PubMedGoogle Scholar
  105. 105.
    Huang, Y. J., Wu, H. C., Tai, N. H., Wang, T. W. (2012). Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small.Google Scholar
  106. 106.
    Kabiri, M., Soleimani, M., Shabani, I., et al. (2012). Neural differentiation of mouse embryonic stem cells on conductive nanofiber scaffolds. Biotechnological Letters, 34(7), 1357–1365.Google Scholar
  107. 107.
    Miao, J., Miyauchi, M., Dordick, J. S., & Linhardt, R. J. (2012). Preparation and characterization of electrospun core sheath nanofibers from multi-walled carbon nanotubes and poly(vinyl pyrrolidone). Journal of Nanoscience and Nanotechnology, 12(3), 2387–2393.PubMedGoogle Scholar
  108. 108.
    Hwang, J. Y., Shin, U. S., Jang, W. C., Hyun, J. K., Wall, I. B., & Kim, H. W. (2013). Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. Nanoscale, 5(2), 487–497.PubMedGoogle Scholar
  109. 109.
    Huang, Y. J., Wu, H. C., Tai, N. H., & Wang, T. W. (2012). Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small, 8(18), 2869–2877.PubMedGoogle Scholar
  110. 110.
    Sabri, F., Cole, J. A., Scarbrough, M. C., & Leventis, N. (2012). Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study. PLoS One, 7(3), e33242.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Joo, N. Y., Knowles, J. C., Lee, G. S., et al. (2012). Effects of phosphate glass fiber-collagen scaffolds on functional recovery of completely transected rat spinal cords. Acta Biomaterialia, 8(5), 1802–1812.PubMedGoogle Scholar
  112. 112.
    Uemura, M., Refaat, M. M., Shinoyama, M., Hayashi, H., Hashimoto, N., & Takahashi, J. (2010). Matrigel supports survival and neuronal differentiation of grafted embryonic stem cell-derived neural precursor cells. Journal of Neuroscience Research, 88(3), 542–551.PubMedGoogle Scholar
  113. 113.
    Widhe, M., Bysell, H., Nystedt, S., et al. (2010). Recombinant spider silk as matrices for cell culture. Biomaterials, 31(36), 9575–9585.PubMedGoogle Scholar
  114. 114.
    Lewicka, M., Hermanson, O., & Rising, A. U. (2012). Recombinant spider silk matrices for neural stem cell cultures. Biomaterials, 33(31), 7712–7717.PubMedGoogle Scholar
  115. 115.
    Assal, Y., Mie, M., & Kobatake, E. (2013). The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures. Biomaterials, 34(13), 3315–3323.PubMedGoogle Scholar
  116. 116.
    Shaikh Mohammed, J., Decoster, M. A., & Mcshane, M. J. (2006). Fabrication of interdigitated micropatterns of self-assembled polymer nanofilms containing cell-adhesive materials. Langmuir, 22(6), 2738–2746.PubMedGoogle Scholar
  117. 117.
    Beduer, A., Vieu, C., Arnauduc, F., Sol, J. C., Loubinoux, I., & Vaysse, L. (2012). Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials, 33(2), 504–514.PubMedGoogle Scholar
  118. 118.
    Ruiz, A., Buzanska, L., Gilliland, D., et al. (2008). Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials, 29(36), 4766–4774.PubMedGoogle Scholar
  119. 119.
    Ilkhanizadeh, S., Teixeira, A. I., & Hermanson, O. (2007). Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials, 28(27), 3936–3943.PubMedGoogle Scholar
  120. 120.
    Xu, T., Gregory, C. A., Molnar, P., et al. (2006). Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials, 27(19), 3580–3588.PubMedGoogle Scholar
  121. 121.
    Choi, Y. K., Cho, H., Seo, Y. K., Yoon, H. H., Park, J. K. (2012). Stimulation of sub-sonic vibration promotes the differentiation of adipose tissue-derived mesenchymal stem cells into neural cells. Life Sciences.Google Scholar
  122. 122.
    Chang, Y. J., Tsai, C. J., Tseng, F. G., Chen, T. J., Wang, T. W. (2012). Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomedicine. Google Scholar
  123. 123.
    Leong, W. S., Wu, S. C., Pal, M., et al. (2012). Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype. Journal of Tissue Engineering and Regenerative Medicine. Google Scholar
  124. 124.
    Shen, C. C., Yang, Y. C., Huang, T. B., Chan, S. C., Liu, B. S. (2013). Neural regeneration in a novel nerve conduit across a large gap of the transected sciatic nerve in rats with low-level laser phototherapy. Journal of Biomedical Materials Research Part A.Google Scholar
  125. 125.
    Alleva, E., & Francia, N. (2009). Psychiatric vulnerability: suggestions from animal models and role of neurotrophins. Neuroscience and Biobehavioral Reviews, 33(4), 525–536.PubMedGoogle Scholar
  126. 126.
    Bella, A. J., Lin, G., Lin, C. S., Hickling, D. R., Morash, C., & Lue, T. F. (2009). Nerve growth factor modulation of the cavernous nerve response to injury. The Journal of Sexual Medicine, 6(Suppl 3), 347–352.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Mwizerwa, O., Das, P., Nagy, N., Akbareian, S. E., Mably, J. D., & Goldstein, A. M. (2011). Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Developmental Dynamics, 240(6), 1402–1411.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Studer, L., Csete, M., Lee, S. H., et al. (2000). Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. Journal of Neuroscience, 20(19), 7377–7383.PubMedGoogle Scholar
  129. 129.
    Cooke, M. J., Wang, Y., Morshead, C. M., & Shoichet, M. S. (2011). Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials, 32(24), 5688–5697.PubMedGoogle Scholar
  130. 130.
    Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A., & Rosenthal, A. (1998). FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell, 93(5), 755–766.PubMedGoogle Scholar
  131. 131.
    Hsieh, J., Aimone, J. B., Kaspar, B. K., Kuwabara, T., Nakashima, K., & Gage, F. H. (2004). IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. Journal of Cell Biology, 164(1), 111–122.PubMedGoogle Scholar
  132. 132.
    Vincent, A. M., Mobley, B. C., Hiller, A., & Feldman, E. L. (2004). IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiology of Disease, 16(2), 407–416.PubMedGoogle Scholar
  133. 133.
    Cheng, B., Maffi, S. K., Martinez, A. A., Acosta, Y. P., Morales, L. D., & Roberts, J. L. (2011). Insulin-like growth factor-I mediates neuroprotection in proteasome inhibition-induced cytotoxicity in SH-SY5Y cells. Molecular and Cellular Neuroscience, 47(3), 181–190.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Arruda, J. L., Colburn, R. W., Rickman, A. J., Rutkowski, M. D., & Deleo, J. A. (1998). Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Research. Molecular Brain Research, 62(2), 228–235.PubMedGoogle Scholar
  135. 135.
    Ma, Q., Sommer, L., Cserjesi, P., & Anderson, D. J. (1997). Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands. Journal of Neuroscience, 17(10), 3644–3652.PubMedGoogle Scholar
  136. 136.
    Ma, Q., Fode, C., Guillemot, F., & Anderson, D. J. (1999). Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes and Development, 13(13), 1717–1728.PubMedGoogle Scholar
  137. 137.
    Liu, Z., Gao, W., Wang, Y., Zhang, W., Liu, H., & Li, Z. (2011). Neuregulin-1beta regulates outgrowth of neurites and migration of neurofilament 200 neurons from dorsal root ganglial explants in vitro. Peptides, 32(6), 1244–1248.PubMedGoogle Scholar
  138. 138.
    Kaka, G. R., Tiraihi, T., Delshad, A., Arabkheradmand, J., & Kazemi, H. (2012). In vitro differentiation of bone marrow stromal cells into oligodendrocyte-like cells using triiodothyronine as inducer. International Journal of Neuroscience, 122(5), 237–247.PubMedGoogle Scholar
  139. 139.
    Lowry, N., Goderie, S. K., Lederman, P., et al. (2012). The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials, 33(10), 2892–2901.PubMedGoogle Scholar
  140. 140.
    Jia, C., Cussen, A. R., & Hegg, C. C. (2011). ATP differentially upregulates fibroblast growth factor 2 and transforming growth factor alpha in neonatal and adult mice: effect on neuroproliferation. Neuroscience, 177, 335–346.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Park, S., Lee, K. S., Lee, Y. J., et al. (2004). Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neuroscience Letters, 359(1–2), 99–103.PubMedGoogle Scholar
  142. 142.
    Herz, J., Reitmeir, R., Hagen, S. I., et al. (2012). Intracerebroventricularly delivered VEGF promotes contralesional corticorubral plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiology of Disease, 45(3), 1077–1085.PubMedGoogle Scholar
  143. 143.
    Ojha, S. S., Stevens, D. R., Hoffman, T. J., et al. (2008). Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules, 9(9), 2523–2529.PubMedGoogle Scholar
  144. 144.
    Del Gaudio, C., Bianco, A., Folin, M., Baiguera, S., & Grigioni, M. (2009). Structural characterization and cell response evaluation of electrospun PCL membranes: micrometric versus submicrometric fibers. Journal of Biomedical Materials Research. Part A, 89(4), 1028–1039.PubMedGoogle Scholar
  145. 145.
    Jeong, S. I., Jun, I. D., Choi, M. J., Nho, Y. C., Lee, Y. M., & Shin, H. (2008). Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-epsilon-caprolactone) for the control of cell adhesion. Macromolecular Bioscience, 8(7), 627–637.PubMedGoogle Scholar
  146. 146.
    Chen, R., Huang, C., Ke, Q., He, C., Wang, H., & Mo, X. (2010). Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 79(2), 315–325.PubMedGoogle Scholar
  147. 147.
    Jeong, S. I., Ko, E. K., Yum, J., Jung, C. H., Lee, Y. M., & Shin, H. (2008). Nanofibrous poly(lactic acid)/hydroxyapatite composite scaffolds for guided tissue regeneration. Macromolecular Bioscience, 8(4), 328–338.PubMedGoogle Scholar
  148. 148.
    Li, M., Guo, Y., Wei, Y., Macdiarmid, A. G., & Lelkes, P. I. (2006). Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials, 27(13), 2705–2715.PubMedGoogle Scholar
  149. 149.
    Lee, Y. S., Collins, G., & Livingston Arinzeh, T. (2011). Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomaterialia, 7(11), 3877–3886.PubMedGoogle Scholar
  150. 150.
    Caroni, P., & Grandes, P. (1990). Nerve sprouting in innervated adult skeletal muscle induced by exposure to elevated levels of insulin-like growth factors. Journal of Cell Biology, 110(4), 1307–1317.PubMedGoogle Scholar
  151. 151.
    Mey, J., & Thanos, S. (1993). Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Research, 602(2), 304–317.PubMedGoogle Scholar
  152. 152.
    Li, B. H., Kim, S. M., Yoo, S. B., Kim, M. J., Jahng, J. W., & Lee, J. H. (2012). Recombinant human nerve growth factor (rhNGF-beta) gene transfer promotes regeneration of crush-injured mental nerve in rats. Oral Surg Oral Med Oral Pathol Oral Radiol, 113(3), e26–e34.PubMedGoogle Scholar
  153. 153.
    Neuhuber, B., Timothy Himes, B., Shumsky, J. S., Gallo, G., & Fischer, I. (2005). Axon growth and recovery of function supported by human bone marrow stromal cells in the injured spinal cord exhibit donor variations. Brain Research, 1035(1), 73–85.PubMedGoogle Scholar
  154. 154.
    Luo, J., Zhang, H. T., Jiang, X. D., Xue, S., & Ke, Y. Q. (2009). Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection. Acta Neurochirurgica (Wien), 151(11), 1483–1492.Google Scholar
  155. 155.
    Magnaghi, V., Conte, V., Procacci, P., et al. (2011). Biological performance of a novel biodegradable polyamidoamine hydrogel as guide for peripheral nerve regeneration. Journal of Biomedical Materials Research. Part A, 98(1), 19–30.PubMedGoogle Scholar
  156. 156.
    Liu, T., Xu, J., Chan, B. P., & Chew, S. Y. (2012). Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. Journal of Biomedical Materials Research. Part A, 100(1), 236–242.PubMedGoogle Scholar
  157. 157.
    Jain, A., Kim, Y. T., Mckeon, R. J., & Bellamkonda, R. V. (2006). In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials, 27(3), 497–504.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Loïc Binan
    • 1
  • Abdellah Ajji
    • 1
  • Gregory De Crescenzo
    • 1
  • Mario Jolicoeur
    • 1
    Email author
  1. 1.Department of Chemical EngineeringEcole Polytechnique de MontréalMontréalCanada

Personalised recommendations