Advertisement

Stem Cell Reviews and Reports

, Volume 10, Issue 1, pp 16–30 | Cite as

Inhibition of TGFβ Signaling Promotes Ground State Pluripotency

  • Seyedeh-Nafiseh Hassani
  • Mehdi Totonchi
  • Ali Sharifi-Zarchi
  • Sepideh Mollamohammadi
  • Mohammad Pakzad
  • Sharif Moradi
  • Azam Samadian
  • Najmehsadat Masoudi
  • Shahab Mirshahvaladi
  • Ali Farrokhi
  • Boris Greber
  • Marcos J. Araúzo-Bravo
  • Davood Sabour
  • Mehdi Sadeghi
  • Ghasem Hosseini Salekdeh
  • Hamid Gourabi
  • Hans R. Schöler
  • Hossein BaharvandEmail author
Article

Abstract

Embryonic stem (ES) cells are considered to exist in a ground state if shielded from differentiation triggers. Here we show that FGF4 and TGFβ signaling pathway inhibitors, designated R2i, not only provide the ground state pluripotency in production and maintenance of naïve ES cells from blastocysts of different mouse strains, but also maintain ES cells with higher genomic integrity following long-term cultivation compared with the chemical inhibition of the FGF4 and GSK3 pathways, known as 2i. Global transcriptome analysis of the ES cells highlights augmented BMP4 signaling pathway. The crucial role of the BMP4 pathway in maintaining the R2i ground state pluripotency is demonstrated by BMP4 receptor suppression, resulting in differentiation and cell death. In conclusion, by inhibiting TGFβ and FGF signaling pathways, we introduce a novel defined approach to efficiently establish the ground state pluripotency.

Keywords

Embryonic stem cells ERK pathway Ground state pluripotency TGF-β pathway 

Notes

Acknowledgments

We thank the members of the Department of Stem Cells and Developmental Biology labs for their helpful suggestions and critical reading of the manuscript. We thank Behrouz Asgari for chimera formation and germline transmission. This study was funded by grants provided from Royan Institute and Iranian Council of Stem Cell Technology and the Iran National Science Foundation (INSF).

Author Contributions

S. H., M. T., H. R. S. and H. B. designed all experiments and wrote the manuscript. S. H. and S. M. performed cell culture. M. T. and A. S. performed real-time PCR analysis. A. F. and M. P. operated in vivo experiments. N. M. and H. G. performed karyotype analysis. S. M. and G. S. H. performed western blot analysis. M. T., A. S., M. S., B. G. and M. J. A. designed and interpreted microarray analysis. G. H. S., S. M. and D. S. contributed to the overall design and writing of the article.

Conflict of Interest

The authors indicate no potential conflicts of interest.

Supplementary material

12015_2013_9473_MOESM1_ESM.doc (9.1 mb)
ESM 1 (DOC 9.11 MB)

References

  1. 1.
    Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.PubMedCrossRefGoogle Scholar
  2. 2.
    Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7634–7638.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Smith, A. G., et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336(6200), 688–690.PubMedCrossRefGoogle Scholar
  4. 4.
    Ying, Q. L., et al. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115(3), 281–292.PubMedCrossRefGoogle Scholar
  5. 5.
    Matsuda, T., et al. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO Journal, 18(15), 4261–4269.PubMedCrossRefGoogle Scholar
  6. 6.
    Niwa, H., et al. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & Development, 12(13), 2048–2060.CrossRefGoogle Scholar
  7. 7.
    Wray, J., Kalkan, T., & Smith, A. G. (2010). The ground state of pluripotency. Biochemical Society Transactions, 38(4), 1027–1032.PubMedCrossRefGoogle Scholar
  8. 8.
    Ying, Q. L., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194), 519–523.PubMedCrossRefGoogle Scholar
  9. 9.
    Martello, G., et al. (2012). Esrrb is a pivotal target of the gsk3/tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell, 11(4), 491–504.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Valvezan, A. J., et al. (2012). Adenomatous polyposis coli (APC) regulates multiple signaling pathways by enhancing glycogen synthase kinase-3 (GSK-3) activity. Journal of Biological Chemistry, 287(6), 3823–3832.PubMedCrossRefGoogle Scholar
  11. 11.
    Acevedo, N., et al. (2007). Glycogen synthase kinase-3 regulation of chromatin segregation and cytokinesis in mouse preimplantation embryos. Molecular Reproduction and Development, 74(2), 178–188.PubMedCrossRefGoogle Scholar
  12. 12.
    Tighe, A., et al. (2007). GSK-3 inhibitors induce chromosome instability. BMC Cell Biology, 8, 34.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hassani, S. N., et al. (2012). Simultaneous suppression of TGF-beta and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains. Stem Cell Reviews, 8(2), 472–481.PubMedCrossRefGoogle Scholar
  14. 14.
    Baharvand, H., & Hassani, S. N. (2013). A new chemical approach to the efficient generation of mouse embryonic stem cells. Methods in Molecular Biology, 997, 13–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Ritchie, M. E., et al. (2007). A comparison of background correction methods for two-colour microarrays. Bioinformatics, 23(20), 2700–2707.PubMedCrossRefGoogle Scholar
  16. 16.
    Smyth, G., Thorne, N., & Wettenhall J., LIMMA: Linear Models for Microarray Data User’s Guide, 2003. URL http://www.bioconductor.org.
  17. 17.
    R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.
  18. 18.
    Baharvand, H., & Matthaei, K. I. (2004). Culture condition difference for establishment of new embryonic stem cell lines from the C57BL/6 and BALB/c mouse strains. In Vitro Cellular & Developmental Biology. Animal, 40(3–4), 76–81.CrossRefGoogle Scholar
  19. 19.
    Kress, C., et al. (1998). Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation. Mammalian Genome, 9(12), 998–1001.PubMedCrossRefGoogle Scholar
  20. 20.
    Blair, K., Wray, J., & Smith, A. (2011). The liberation of embryonic stem cells. PLoS Genetics, 7(4), e1002019.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Marks, H., et al. (2012). The transcriptional and epigenomic foundations of ground state pluripotency. Cell, 149(3), 590–604.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hamada, H., et al. (2002). Establishment of vertebrate left-right asymmetry. Nature Reviews Genetics, 3(2), 103–113.PubMedCrossRefGoogle Scholar
  23. 23.
    Rebuzzini, P., et al. (2008). Karyotype analysis of the euploid cell population of a mouse embryonic stem cell line revealed a high incidence of chromosome abnormalities that varied during culture. Cytogenetic and Genome Research, 121(1), 18–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong, E. S., et al. (2010). A simple procedure for the efficient derivation of mouse ES cells. Methods in Enzymology, 476, 265–283.PubMedCrossRefGoogle Scholar
  25. 25.
    Xu, R. H., et al. (2008). NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3(2), 196–206.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Fei, T., et al. (2010). Smad2 mediates Activin/Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells. Cell Research, 20(12), 1306–1318.PubMedCrossRefGoogle Scholar
  27. 27.
    Ogawa, K., et al. (2007). Activin-Nodal signaling is involved in propagation of mouse embryonic stem cells. Journal of Cell Science, 120(Pt 1), 55–65.PubMedGoogle Scholar
  28. 28.
    Watabe, T., & Miyazono, K. (2009). Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Research, 19(1), 103–115.PubMedCrossRefGoogle Scholar
  29. 29.
    Heldin, C. H., Miyazono, K., & ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390(6659), 465–471.PubMedCrossRefGoogle Scholar
  30. 30.
    Akhurst, R. J., et al. (1990). TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development, 108(4), 645–656.PubMedGoogle Scholar
  31. 31.
    Zwijsen, A., et al. (1999). Ectopic expression of the transforming growth factor beta type II receptor disrupts mesoderm organisation during mouse gastrulation. Developmental Dynamics, 214(2), 141–151.PubMedCrossRefGoogle Scholar
  32. 32.
    Lee, K. L., et al. (2011). Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genetics, 7(6), e1002130.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Mullen, A. C., et al. (2011). Master transcription factors determine cell-type-specific responses to TGF-beta signaling. Cell, 147(3), 565–576.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    James, D., et al. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132(6), 1273–1282.PubMedCrossRefGoogle Scholar
  35. 35.
    Ichida, J. K., et al. (2009). A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5(5), 491–503.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Maherali, N., & Hochedlinger, K. (2009). Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Current Biology, 19(20), 1718–1723.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Li, Z., et al. (2012). BMP4 Signaling Acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell, 10(2), 171–182.PubMedCrossRefGoogle Scholar
  38. 38.
    Loh, K. M., & Lim, B. (2011). A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell, 8(4), 363–369.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Seyedeh-Nafiseh Hassani
    • 1
    • 2
  • Mehdi Totonchi
    • 1
    • 2
    • 3
  • Ali Sharifi-Zarchi
    • 1
    • 4
  • Sepideh Mollamohammadi
    • 1
  • Mohammad Pakzad
    • 1
  • Sharif Moradi
    • 1
  • Azam Samadian
    • 1
  • Najmehsadat Masoudi
    • 3
  • Shahab Mirshahvaladi
    • 6
  • Ali Farrokhi
    • 1
  • Boris Greber
    • 7
  • Marcos J. Araúzo-Bravo
    • 7
  • Davood Sabour
    • 1
    • 7
  • Mehdi Sadeghi
    • 5
  • Ghasem Hosseini Salekdeh
    • 6
  • Hamid Gourabi
    • 3
  • Hans R. Schöler
    • 7
  • Hossein Baharvand
    • 1
    • 2
    Email author
  1. 1.Department of Stem Cells and Developmental Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
  2. 2.Department of Developmental BiologyUniversity of Science and Culture, ACECRTehranIran
  3. 3.Department of Genetics at Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
  4. 4.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  5. 5.National Institute of Genetic Engineering and BiotechnologyTehranIran
  6. 6.Department of Molecular Systems Biology at Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
  7. 7.Department of Cell and Developmental BiologyMax Planck Institute for Molecular BiomedicineMünsterGermany

Personalised recommendations