Stem Cell Reviews and Reports

, Volume 10, Issue 1, pp 103–113 | Cite as

Sirtuin-2 Activity is Required for Glioma Stem Cell Proliferation Arrest but not Necrosis Induced by Resveratrol

  • Salwa Sayd
  • Cécile Thirant
  • Elias A. El-Habr
  • Joanna Lipecka
  • Luiz Gustavo Dubois
  • Alexandra Bogeas
  • Nadia Tahiri-Jouti
  • Hervé ChneiweissEmail author
  • Marie-Pierre JunierEmail author


Glioblastomas, the most common form of primary brain tumors, are the fourth cause of death by cancer in adults. Increasing evidences suggest that glioblastoma resistance to existing radio- and chemotherapies rely on glioblastoma stem cells (GSCs). GSCs are endowed with a unique combination of stem-like properties alike to normal neural stem cells (NSCs), and of tumor initiating properties. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status. Here, we used resveratrol to explore the molecular mechanisms differing between GSCs and NSCs. We observed a dual action of resveratrol on GSCs: resveratrol blocked GSC proliferation up to 150 μM and induced their necrosis at higher doses. On the opposite, resveratrol had no effect on NSC behavior. To determine the mechanisms underlying resveratrol effects, we focused our attention on the family of NAD-dependent deacetylases sirtuins (SIRT). A member of this family, SIRT1, has been repetitively shown to constitute a preferential resveratrol target, at least in normal cells. Western blot analysis showed that SIRT1 and SIRT3 were expressed by both GSCs and NSCs whereas SIRT2 expression was restricted to GSCs. Pharmacological blockade of SIRT2 activity or down-regulation of SIRT2 expression with siRNAs counteracted the inhibitory effect of resveratrol on cell proliferation. On the contrary, inhibition of SIRT2 activity or expression did not counteract GSC necrosis observed in presence of high doses of resveratrol. Our results highlight SIRT2 as a novel target for altering GSC properties.


Sirtuin Cancer stem cell α-tubulin Necrosis 



The authors thank Amélia Dias-Morais for excellent technical assistance, and are grateful to Dr P. Auberger (INSERM U895, Nice, France) for providing LC3 siRNA. This work was supported by ARC and by Région Ile de France-Canceropôle (CT and EAE fellowships), and by CAPES/COFECUB (LGD and AB fellowships).

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Stupp, R., Mason, W. P., van den Bent, M. J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996.PubMedCrossRefGoogle Scholar
  2. 2.
    Bao, S., Wu, Q., McLendon, R. E., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.PubMedCrossRefGoogle Scholar
  3. 3.
    Diehn, M., & Clarke, M. F. (2006). Cancer stem cells and radiotherapy: new insights into tumor radioresistance. Journal of the National Cancer Institute, 98(24), 1755–1757.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen, J., Li, Y., Yu, T. S., et al. (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature, 488(7412), 522–526.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Thirant, C., Bessette, B., Varlet, P., et al. (2011). Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS ONE, 6(1), e16375.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Zbinden, M., Duquet, A., Lorente-Trigos, A., et al. (2010). NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. The EMBO Journal, 29(15), 2659–2674.PubMedCrossRefGoogle Scholar
  7. 7.
    Fareh, M., Turchi, L., Virolle, V., et al. (2012). The miR 302–367 cluster drastically affects self-renewal and infiltration properties of glioma-initiating cells through CXCR4 repression and consequent disruption of the SHH-GLI-NANOG network. Cell death and differentiation, 19(2), 232–244.PubMedCrossRefGoogle Scholar
  8. 8.
    Eyler, C. E., & Rich, J. N. (2008). Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. Journal of Clinical Oncology, 26(17), 2839–2845.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S., & Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Research, 24(5A), 2783–2840.PubMedGoogle Scholar
  10. 10.
    Narita, K., Hisamoto, M., Okuda, T., & Takeda, S. (2011). Differential neuroprotective activity of two different grape seed extracts. PLoS ONE, 6(1), e14575.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Sun, A. Y., Wang, Q., Simonyi, A., & Sun, G. Y. (2010). Resveratrol as a therapeutic agent for neurodegenerative diseases. Molecular Neurobiology, 41(2–3), 375–383.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Milne, J. C., Lambert, P. D., Schenk, S., et al. (2007). Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 450(7170), 712–716.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Vaziri, H., Dessain, S. K., NgEaton, E., et al. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107(2), 149–159.PubMedCrossRefGoogle Scholar
  14. 14.
    Narayan, N., Lee, I. H., Borenstein, R., et al. (2012). The NAD-dependent deacetylase SIRT2 is required for programmed necrosis. Nature, 492(7428), 199–204.PubMedCrossRefGoogle Scholar
  15. 15.
    Hiratsuka, M., Inoue, T., Toda, T., et al. (2003). Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochemical and Biophysical Research Communications, 309(3), 558–566.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang, W., Murao, K., Zhang, X., et al. (2010). Resveratrol represses YKL-40 expression in human gliomaU87 cells. BMC Cancer, 10, 593.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Filippi-Chiela, E. C., VillodreES, Z. L. L., & Lenz, G. (2011). Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS ONE, 6(6), e20849.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Shu, X. H., Li, H., Sun, X. X., et al. (2011). Metabolic patterns and biotransformation activities of resveratrol in human glioblastoma cells: relevance with therapeutic efficacies. PLoS ONE, 6(11), e27484.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Jiang, H., Zhang, L., Kuo, J., et al. (2005). Resveratrol-induced apoptotic death in human U251 glioma cells. Molecular Cancer Therapeutics, 4(4), 554–561.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin, H., Xiong, W., Zhang, X., et al. (2011). Notch-1 activation-dependent p53 restoration contributes to resveratrol-induced apoptosis in glioblastoma cells. Oncology Reports, 26(4), 925–930.PubMedGoogle Scholar
  21. 21.
    Lin, C. J., Lee, C. C., Shih, Y. L., et al. (2012). Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radical Biology and Medicine, 52(2), 377–391.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang, H., Lin, H., Zhang, X., & Li, J. (2012). Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncology Reports, 27(6), 2050–2056.PubMedGoogle Scholar
  23. 23.
    Silvestre, D. C., Pineda, J. R., Hoffschir, F., et al. (2011). Alternative lengthening of telomeres in human glioma stem cells. Stem Cells, 29(3), 440–451.PubMedCrossRefGoogle Scholar
  24. 24.
    Surena, A. L., de Faria, G. P., Studler, J. M., et al. (2009). DLG1/SAP97 modulates transforming growth factor alpha bioavailability. Biochimica et Biophysica Acta, 1793(2), 264–272.PubMedCrossRefGoogle Scholar
  25. 25.
    Patru, C., Romao, L., Varlet, P., et al. (2010). CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer, 10, 66.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Galan-Moya, E. M., Le Guelte, A., Lima Fernandes, E., et al. (2011). Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway. EMBO Reports, 12(5), 470–476.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Thirant, C., Galan-Moya, E. M., Dubois, L. G., et al. (2012). Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells, 30(5), 845–853.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, J., Kotliarova, S., Kotliarov, Y., et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell, 9(5), 391–403.PubMedCrossRefGoogle Scholar
  29. 29.
    Degenhardt, K., Mathew, R., Beaudoin, B., et al. (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1), 51–64.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Mathew, R., Karantza-Wadsworth, V., & White, E. (2007). Role of autophagy in cancer. Nature Reviews. Cancer, 7(12), 961–967.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720–5728.PubMedCrossRefGoogle Scholar
  32. 32.
    Baur, J. A. (2010). Resveratrol, sirtuins, and the promise of a DR mimetic. Mechanisms of Ageing and Development, 131(4), 261–269.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., & Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+−dependent tubulin deacetylase. Molecular Cell, 11(2), 437–444.PubMedCrossRefGoogle Scholar
  34. 34.
    Leist, M., Single, B., Castoldi, A. F., Kühnle, S., & Nicotera, P. (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. The Journal of Experimental Medicine, 185(8), 1481–1486.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Athar, M., Back, J. H., Tang, X., et al. (2007). Resveratrol: a review of preclinical studies for human cancer prevention. Toxicology and Applied Pharmacology, 224(3), 274–283.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Gagliano, N., Aldini, G., Colombo, G., et al. (2010). The potential of resveratrol against human gliomas. Anti-cancer Drugs, 21(2), 140–150.PubMedCrossRefGoogle Scholar
  37. 37.
    Aziz, M. H., Nihal, M., Fu, V. X., Jarrard, D. F., & Ahmad, N. (2006). Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3'-kinase/Akt pathway and Bcl-2 family proteins. Molecular Cancer Therapeutics, 5(5), 1335–1341.PubMedCrossRefGoogle Scholar
  38. 38.
    Michels, G., Wätjen, W., Weber, N., et al. (2006). Resveratrol induces apoptotic cell death in rat H4IIE hepatoma cells but necrosis in C6 glioma cells. Toxicology, 225(2–3), 173–182.PubMedCrossRefGoogle Scholar
  39. 39.
    Vanamala, J., Reddivari, L., Radhakrishnan, S., & Tarver, C. (2010). Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer, 10, 238.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Puissant, A., Robert, G., Fenouille, N., et al. (2010). Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Research, 70(3), 1042–1052.PubMedCrossRefGoogle Scholar
  41. 41.
    Li, J., Qin, Z., & Liang, Z. (2009). The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells. BMC Cancer, 9, 215.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Yang, Y. P., Chang, Y. L., Huang, P. I., et al. (2012). Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis. Journal of Cellular Physiology, 227(3), 976–993.PubMedCrossRefGoogle Scholar
  43. 43.
    Griguer, C. E., Oliva, C. R., Gobin, E., et al. (2008). CD133 is a marker of bioenergeticstress in human glioma. PLoS ONE, 3(11), e3655.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Wenzel, E., Soldo, T., Erbersdobler, H., & Somoza, V. (2005). Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats. Molecular Nutrition and Food Research, 49(5), 482–494.PubMedCrossRefGoogle Scholar
  45. 45.
    Planas, J. M., Alfaras, I., Colom, H., & Juan, M. E. (2012). The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Archives of Biochemistry and Biophysics, 527(2), 67–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Hambardzumyan, D., Squatrito, M., Carbajal, E., & Holland, E. C. (2008). Glioma formation, cancer stem cells, and akt signaling. Stem Cell Reviews, 4(3), 203–210.PubMedCrossRefGoogle Scholar
  47. 47.
    Kroemer, G., Galluzzi, L., Vandenabeele, P., et al. (2009). Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation, 16(1), 3–11.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Edinger, A. L., & Thompson, C. B. (2004). Death by design: apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16(6), 663–669.PubMedCrossRefGoogle Scholar
  49. 49.
    Suzuki, K., & Koike, T. (2007). Resveratrol abolishes resistance to axonal degeneration in slow Wallerian degeneration (WldS) mice: activation of SIRT2, an NAD-dependent tubulin deacetylase. Biochemical and Biophysical Research Communications, 359(3), 665–671.PubMedCrossRefGoogle Scholar
  50. 50.
    Fan, Y., Ludewig, R., & Scriba, G. K. (2009). 9-Fluorenylmethoxycarbonyl-labeled peptides as substrates in a capillary electrophoresis-based assay for sirtuin enzymes. Analytical Biochemistry, 387(2), 243–248.PubMedCrossRefGoogle Scholar
  51. 51.
    Outeiro, T. F., Kontopoulos, E., Altmann, S. M., et al. (2007). Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science, 317(5837), 516–519.PubMedCrossRefGoogle Scholar
  52. 52.
    Inoue, T., Hiratsuka, M., Osaki, M., & Oshimura, M. (2007). The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle, 6(9), 1011–1018.PubMedCrossRefGoogle Scholar
  53. 53.
    Anekonda, T. S. (2006). Resveratrol-a boon for treating Alzheimer’s disease? Brain Research Reviews, 52(2), 316–326.PubMedCrossRefGoogle Scholar
  54. 54.
    Pfister, J. A., Ma, C., Morrison, B. E., & D’Mello, S. R. (2008). Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS ONE, 3(12), e4090.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Liu, B., Ghosh, S., Yang, X., et al. (2012). Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metabolism, 16(6), 738–750.PubMedCrossRefGoogle Scholar
  56. 56.
    Lin, J. N., Lin, V. C., Rau, K. M., et al. (2010). Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. Journal of Agricultural and Food Chemistry, 58(3), 1584–1592.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Salwa Sayd
    • 1
    • 2
  • Cécile Thirant
    • 1
    • 3
  • Elias A. El-Habr
    • 1
  • Joanna Lipecka
    • 1
  • Luiz Gustavo Dubois
    • 1
  • Alexandra Bogeas
    • 1
  • Nadia Tahiri-Jouti
    • 2
  • Hervé Chneiweiss
    • 1
    • 4
    Email author
  • Marie-Pierre Junier
    • 1
    • 4
    Email author
  1. 1.Team Glial Plasticity, U894 Inserm, Université Paris DescartesParisFrance
  2. 2.Laboratory of Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy of CasablancaCasablancaMorocco
  3. 3.U1009 Inserm IGR Université Paris-XIVillejuifFrance
  4. 4.U894 Team Glial Plasticity, Center of Psychiatry and NeurosciencesParisFrance

Personalised recommendations