Goldberg, E. D., Dygai, A. M., & Zhdanov, V. V. (1999). The role of the microenvironment, inducing hematopoiesis during cytostatic myelosuppression (p. 114). Tomsk: STT.
Google Scholar
Goldberg, E. D., Dygai, A. M., & Zyuzkov, G. N. (2006). Hypoxia and the blood system (p. 142). Tomsk: Tomsk Univ.
Google Scholar
Avigdor, A., Goichberg, P., Shivtiel, S., Dar, A., Peled, A., Samira, S., Kollet, O., Hershkoviz, R., Alon, R., Hardan, I., Ben-Hur, H., Naor, D., Nagler, A., & Lapidot, T. (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103(8), 2981–2989.
PubMed
Article
CAS
Google Scholar
Dygai, A. M., & Zyuzkov, G. N. (2009). Cellular therapy: new points of view. Science in Russia, Moscow. Science, 169(1), 4–8.
Google Scholar
Goldberg, E. D., Dygai, A. M., Zhdanov, V. V., Vetoshkina, T. V., Guryantseva, L. A., Dubskaya, T. Y., Ermolaeva, L. A., Zyuzkov, G. N., Simanina, E. V., Sotnikova, N. V., Stavrova, L. A., Udut, E. V., Fomina, T. I., & Khrichkova, T. Y. (2007). Creation of experimental models and study of the regeneratory potential of stem cells on these models. Bulletin of Experimental Biology and Medicine, 143(1 suppl), 1–8.
Article
Google Scholar
Dygai, A. M., Zyuz’kov, G. N., Zhdanov, V. V., Madonov, P. G., Udut, E. V., Miroshnichenko, L. A., Khrichkova, T. Y., Simanina, E. V., Stavrova, L. A., Artamonov, A. V., et al. (2011). Pharmacological properties of granulocytic colony-stimulating factor Pegylated using electron beam synthesis nanotechnologies. Bulletin of Experimental Biology and Medicine, 152(1), 133–137.
PubMed
Article
CAS
Google Scholar
Draper, J. S., Smith, K., Gokhale, P., Moore, H. D., Maltby, E., Johnson, J., Meisner, L., Zwaka, T. P., Thomson, J. A., & Andrews, P. W. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nature Biotechnology, 22, 53–54.
PubMed
Article
CAS
Google Scholar
Zyuz’kov, G. N., Suslov, N. I., Dygai, A. M., Zhdanov, V. V., & Goldberg, E. D. (2005). Role of stem cells in adaptation to hypoxia and mechanisms of neuroprotective effect of granulocytic colony-stimulating factor. Bulletin of Experimental Biology and Medicine, 140(5), 606–611.
PubMed
Article
Google Scholar
Epshtein, O. I., Zyuz’kov, G. N., Sotnikova, N. V., Stavrova, L. A., Fomina, T. I., Vetoshkina, T. V., Sergeeva, S. A., Dubskaya, T. Y., Dygai, A. M., & Goldberg, E. D. (2005). Mechanisms of hepatoprotective effect of preparation containing superlow doses of antibodies to granulocytic colony-stimulating factor. Bulletin of Experimental Biology and Medicine, 140(5), 598–602.
Article
Google Scholar
Stavrova, L. A., Fomina, T. I., Plotnikov, M. B., Aliev, O. I., Sotnikova, N. V., Epshtein, O. I., Sergeeva, S. A., Guryantseva, L. A., Zyuz’kov, G. N., Zhdanov, V. V., Dygai, A. M., & Goldberg, E. D. (2005). Pharmacological regulation of functional activity of stem cells in restoration of the myocardium during the postinfarction period. Bulletin of Experimental Biology and Medicine, 140(5), 593–597.
PubMed
Article
CAS
Google Scholar
Goldberg, E. D., Dygai, A. M., & Zyuz’kov, G. N. (2006). Mechanisms of regulation of blood system during oxygen deficiency and the participation of neural stem cells in adaptation to hypoxia. Bull Siberian Med, 2, 43–51.
Google Scholar
Goldberg, E. D., Dygai, A. M., Zhdanov, V. V., Zyuz’kov, G. N., Ermakova, N. N., Vetoshkina, T. V., Fomina, T. I., Ermolaeva, L. A., & Dubskaya, T. Y. (2007). Mechanisms of therapeutic effects of granulocytic colony-stimulating factor in experimental diabetes mellitus. Bulletin of Experimental Biology and Medicine, 146(4), 543–546.
Article
Google Scholar
Ermakova, N. N., Zhdanov, V. V., Dygai, A. M., Zyuz’kov, G. N., Stavrova, L. A., Guryantseva, L. A., Khrichkova, T. Y., Udut, E. V., Vetoshkina, T. V., Fomina, T. I., Ermolaeva, L. A., & Goldberg, E. D. (2009). Mechanisms underlying the effects of ultralow doses of antibodies to granulocytic colony-stimulating factor on recovery of damaged Pan-creatic tissue in experimental diabetes mellitus. Bulletin of Experimental Biology and Medicine, 148(3), 549–552.
PubMed
Article
CAS
Google Scholar
Zyuz’kov, G. N., Zhdanov, V. V., Guryantseva, L. A., Stavrova, L. A., Khrichkova, T. Y., Dygai, A. M., & Goldberg, E. D. (2009). Role of mesenchymal precursor cells in the stimulation of wound healing under the effect of ultralow doses of antibodies to granulocytic colony-stimulating factor. Bulletin of Experimental Biology and Medicine, 148(3), 553–555.
PubMed
Article
Google Scholar
Stavrova, L.A., Zyuźkov, G.N., Simanina, E.V., Miroshnichenko, L.A., Udut, E.V., Khrichkova, T.Y., Skurikhin, E.G., Pershina, O.V., Ermakova, N.N., Firsova, T.V., Zhdanov, V.V., Dygai, A.M., & Goldberg, E.D. (2009). Hemostimualting properties of preparation containing ultralow doses of antibodies to stem cell factor in cytostatic myelosuppression. Bulletin of Experimental Biology and Medicine, 148(3), 556–559.
Google Scholar
Zhu, H., Mitsuhashi, N., Klein, A., Barsky, L. W., Weinberg, K., Barr, M. L., Demetriou, A., & Wu, G. D. (2006). The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 24(4), 928–935.
PubMed
Article
CAS
Google Scholar
Nedvetzki, S., Gonen, E., Assayag, N., Reich, R., Williams, R. O., Thurmond, R. L., Huang, J. F., Neudecker, B. A., Wang, F. S., Turley, E. A., & Naor, D. (2004). RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in inflamed CD44-knockout mice: a different interpretation of redundancy. Proceedings of the National Academy of Sciences USA, 101(52), 18081–18086.
Article
CAS
Google Scholar
Stern, R. (2003). Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology, 13(12), 105–115.
Article
Google Scholar
Noble, P. W. (2002). Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology, 21, 25–29.
PubMed
Article
CAS
Google Scholar
Goldberg, E. D., Dygai, A. M., Zyuz’kov, G. N., Zhdanov, V. V., Simanina, E. V., & Guryantseva, L. A. (2007). Role of hyaluronidase in the regulation of functions of mesenchymal precursor cells. Bulletin of Experimental Biology and Medicine, 143(4), 548–551.
PubMed
Article
CAS
Google Scholar
Goldberg, E. D., Dygai, A. M., Zyuz’kov, G. N., & Zhdanov, V. V. (2007). Mechanisms of mobilization of mesenchymal precursor cell under the effect of granulocytic colony-stimulating factor and hyaluronidase. Bulletin of Experimental Biology and Medicine, 144(6), 802–805.
PubMed
Article
CAS
Google Scholar
Goldberg, E. D., Dygai, A. M., Zyuz’kov, G. N., Zhdanov, V. V., Simanina, E. V., & Guryantseva, L. A. (2007). Role of hyaluronidase in the regulation of hemopoiesis. Bulletin of Experimental Biology and Medicine, 144(6), 840–845.
Article
Google Scholar
Zyuz’kov, G. N., Zhdanov, V. V., Dygai, A. M., & Goldberg, E. D. (2007). Role of hyaluronidase in the regulation of hematopoiesis. Bulletin of Experimental Biology and Medicine, 12, 690–695.
Google Scholar
Goldberg, E. D., Dygai, A. M., Zyuz’kov, G. N., & Zhdanov, V. V. (2008). Effects of granulocyte colony-stimulating factor and hyaluronidase on the formation of blood system reactions. Bulletin of Experimental Biology and Medicine, 145(6), 682–687.
PubMed
Article
CAS
Google Scholar
Vereschagin, E. I., Han, D. H., Troitsky, A. W., Grishin, O. V., Petrov, S. E., Gulyaeva, E. P., Bogdanova, L. A., Korobeinikov, M. V., & Auslender, V. L. (2001). Radiation technology in the preparation of polyethylene oxide hydrophilic gels and immobilization of proteases for use in medical practice. Archives of Pharmacal Research, 24(3), 229–233.
PubMed
Article
CAS
Google Scholar
Dygai, A. M., Vereschagin, E. I., Zyuz’kov, G. N., Zhdanov, V. V., Madonov, P. G., Simanina, E. V., Stavrova, L. A., Udut, E. V., Khrichkova, T. Y., Miroshnichenko, L. A., Minakova, M. Y., Ermakova, N. N., Firsova, T. V., Dygai, A. M., Vereshchagin, E. I., Zyuz’kov, G. N., Zhdanov, V. V., & Madonov, P. G. (2009). Mobilization of progenitor cells into the blood by immobilized granulocytic colony-stimulating factor. Bulletin of Experimental Biology and Medicine, 147(4), 499–502.
PubMed
Article
CAS
Google Scholar
Andreeva, T. V., & Zyuzkov, G. N. (2009). Hemostimulating activity of the immobilized granulocyte colony-stimulating factor. Siberian Journal Cancer, 1(suppl), 15–16.
Google Scholar
Sharaev, P. N., Strelkov, N. S., Shklayeva, E. V., et al. (1996). The determination of hyluronidase activity. Clinical Laboratory Diagnostics, 3, 21–22.
Google Scholar
Goldberg, E. D., Dygai, A. M., & Schachov, V. P. (1992). Methods of tissue culture in hematology (p. 272). Tomsk: Tomsk Univ.
Google Scholar
in’t Anker, P. S., Noort, W. A., Scherjon, S. A., Kleijburg-van der Keur, C., Kruisselbrink, A. B., van Bezooijen, R. L., Beekhuizen, W., Willemze, R., Kanhai, H. H., & Fibbe, W. E. (2003). Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogenous multilineage differentiation potential. Haematologica, 88, 845–852.
Google Scholar
Glanz, S. (1998). Medico-biological statistics. Moscow “Practice”, pp. 459
Bonnefoix, T., Bonnefoix, P., Callanan, M., Verdiel, P., & Sotto, J. J. (2001). Graphical representation of a generalized linear model-based statistical test estimating the fit of the single-hit poisson model to limiting dilution assays. Journal of Immunology, 167, 5725–5730.
CAS
Google Scholar
Seyfulla, R. D., Timofeev, A. B., Ordzhonikidze, Z. G., Rozhkova, E. A., Kulikova, E. V., Druzhinin, A. E., Kuznetsov, Y. M., & Kim, E. K. (2008). Problems of using nanotechnology in pharmacology. Experimental and Clinical Pharmacology, 71(1), 61–69.
Google Scholar
Piedmonte, D. M., & Treuheit, M. J. (2008). Formulation of Neulasta (pegfilgrastim). Advanced Drug Delivery Reviews, 60, 50–58.
PubMed
Article
CAS
Google Scholar
Dygai, A. M., Zyuzkov, G. N., Zhdanov, V. V., Simanina, E. V., Stavrova, L. A., Udut, E. V., Khrichkova, T. Y., Minakova, M. Y., Ermakova, N. N., & Firsova, T. V. (2009). Effect of transplantation of peripheral blood mononuclears obtained using granulocytic colony-stimulating factor and Hyaluronidase on regeneration of hemopoietic tissue during myelosuppression. Bulletin of Experimental Biology and Medicine, 148(1), 120–125.
PubMed
Article
CAS
Google Scholar
Bruns, I., Steidl, U., Fischer, J. C., Czibere, A., Kobbe, G., Raschke, S., Singh, R., Fenk, R., Rosskopf, M., Pechtel, S., von Haeseler, A., Wernet, P., Tenen, D. G., Haas, R., & Kronenwett, R. (2008). Pegylated granulocyte colony-stimulating factor mobilizes CD34+ cells with different stem and progenitor subsets and distinct functional properties in comparison with unconjugated granulocyte colony-stimulating factor. Haematologica, 93, 347–355.
PubMed
Article
CAS
Google Scholar