Cardiac Stem Cells and their Roles in Myocardial Infarction

Abstract

Myocardial infarction leads to loss of cardiomyocytes, scar formation, ventricular remodeling and eventually deterioration of heart function. Over the past decade, stem cell therapy has emerged as a novel strategy for patients with ischemic heart disease and its beneficial effects have been demonstrated by substantial preclinical and clinical studies. Efficacy of several types of stem cells in the therapy of cardiovascular diseases has already been evaluated. However, repair of injured myocardium through stem cell transplantation is restricted by critical safety issues and ethic concerns. Recently, the discovery of cardiac stem cells (CSCs) that reside in the heart itself brings new prospects for myocardial regeneration and reconstitution of cardiac tissues. CSCs are positive for various stem cell markers and have the potential of self-renewal and multilineage differentiation. They play a pivotal role in the maintenance of heart homeostasis and cardiac repair. Elucidation of their biological characteristics and functions they exert in myocardial infarction are very crucial to further investigations on them. This review will focus on the field of cardiac stem cells and discuss technical and practical issues that may involve in their clinical applications in myocardial infarction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

CSCs:

Cardiac stem cells

MI:

Myocardial infarction

CPCs:

Cardiac progenitor cells

ESCs:

Embryonic stem cells

BMSCs:

Bone marrow stem cells

iPSCs:

Induced pluripotent stem cells

EPCs:

Embryo progenitor cells

BMPCs:

Bone marrow progenitors cells

SP:

Side population

LV:

Left ventricular

mCSCs:

Myogenic CSCs

vCSCs:

Vasculogenic CSCs

IGF-1:

Insulin-like growth factor 1

HGF:

Hepatocyte growth factor

SDF-1:

Stromal cell-derived factor-1

VEGF:

Vascular endothelial growth factor

TGF-β:

Transforming growth factor beta

BMP:

Bone morphogenetic protein

References

  1. 1.

    Lloyd-Jones, D., Adams, R. J., Brown, T. M., et al. (2010). Executive summary: heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation, 121(7), 948–954.

    PubMed  Article  Google Scholar 

  2. 2.

    Jameel, M. N., & Zhang, J. (2009). Heart failure management: the present and the future. Antioxidants & Redox Signaling, 11(8), 1989–2010.

    CAS  Article  Google Scholar 

  3. 3.

    Donndorf, P., Strauer, B. E., & Steinhoff, G. (2012). Update on cardiac stem cell therapy in heart failure. Current Opinion in Cardiology, 27(2), 154–160.

    PubMed  Article  Google Scholar 

  4. 4.

    Choi, S. H., Jung, S. Y., Kwon, S. M., & Baek, S. H. (2012). Perspectives on stem cell therapy for cardiac regeneration. Circulation Journal, 76(6), 1307–1312.

    PubMed  Article  Google Scholar 

  5. 5.

    Abdelwahid, E., Siminiak, T., Guarita-Souza, L. C., et al. (2011). Stem cell therapy in heart diseases: a review of selected new perspectives, practical considerations and clinical applications. Current Cardiology Reviews, 7(3), 201–212.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Caspi, O., Huber, I., Kehat, I., et al. (2007). Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. Journal of the American College of Cardiology, 50(19), 1884–1893.

    PubMed  Article  Google Scholar 

  7. 7.

    Adler, D. S., Lazarus, H., Nair, R., et al. (2011). Safety and efficacy of bone marrow-derived autologous CD133+ stem cell therapy. Frontiers in Bioscience (Elite Edition), 3, 506–514.

    Article  Google Scholar 

  8. 8.

    Wang, T., Tang, W., Sun, S., et al. (2009). Mesenchymal stem cells improve outcomes of cardiopulmonary resuscitation in myocardial infarcted rats. Journal of Molecular and Cellular Cardiology, 46(3), 378–384.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Dai, B., Huang, W., Xu, M., et al. (2011). Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function. Journal of the American College of Cardiology, 58(20), 2118–2127.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Lodi, D., Iannitti, T., & Palmieri, B. (2011). Stem cells in clinical practice: applications and warnings. Journal of Experimental & Clinical Cancer Research, 30(1), 9.

    Article  Google Scholar 

  11. 11.

    Jeong, J. O., Han, J. W., Kim, J. M., et al. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research, 108(11), 1340–1347.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Ahmed, R. P., Ashraf, M., Buccini, S., Shujia, J., & Haider, H. (2011). Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction. Regenerative Medicine, 6(2), 171–178.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Breitbach, M., Bostani, T., Roell, W., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Rubart, M., & Field, L. J. (2006). Cardiac regeneration: repopulating the heart. Annual Review of Physiology, 68, 29–49.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Kajstura, J., Gurusamy, N., Ogorek, B., et al. (2010). Myocyte turnover in the aging human heart. Circulation Research, 107(11), 1374–1386.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Bergmann, O., Bhardwaj, R. D., Bernard, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Bostrom, P., Mann, N., Wu, J., et al. (2010). C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell, 143(7), 1072–1083.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Kajstura, J., Urbanek, K., Perl, S., et al. (2010). Cardiomyogenesis in the adult human heart. Circulation Research, 107(2), 305–315.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Leri, A., Kajstura, J., & Anversa, P. (2011). Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research, 109(8), 941–961.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Frati, C., Savi, M., Graiani, G., et al. (2011). Resident cardiac stem cells. Current Pharmaceutical Design, 17(30), 3252–3257.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Hsieh, P. C., Segers, V. F., Davis, M. E., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13(8), 970–974.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Hosoda, T., Kajstura, J., Leri, A., & Anversa, P. (2010). Mechanisms of myocardial regeneration. Circulation Journal, 74(1), 13–17.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Sussman, M. A., & Murry, C. E. (2008). Bones of contention: marrow-derived cells in myocardial regeneration. Journal of Molecular and Cellular Cardiology, 44(6), 950–953.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Vincent, S. D., & Buckingham, M. E. (2010). How to make a heart: the origin and regulation of cardiac progenitor cells. Current Topics in Developmental Biology, 90, 1–41.

    PubMed  Article  Google Scholar 

  25. 25.

    Chimenti, I., Gaetani, R., Barile, L., et al. (2012). Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods in Molecular Biology, 879, 327–338.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Angelini, A., Castellani, C., Tona, F., et al. (2007). Continuous engraftment and differentiation of male recipient Y-chromosome-positive cardiomyocytes in donor female human heart transplants. The Journal of Heart and Lung Transplantation, 26(11), 1110–1118.

    PubMed  Article  Google Scholar 

  27. 27.

    Jiang, H., Tu, H., Chen, Z., et al. (2011). Effects of chimerism on the mice heart transplanted survival with the bone marrow infusion. Transplant Immunology, 25(4), 202–206.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Wu, S. M., Fujiwara, Y., Cibulsky, S. M., et al. (2006). Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell, 127(6), 1137–1150.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Serradifalco, C., Catanese, P., Rizzuto, L., et al. (2011). Embryonic and foetal Islet-1 positive cells in human hearts are also positive to c-Kit. European Journal of Histochemistry, 55(4), e41.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Barile, L., Messina, E., Giacomello, A., & Marban, E. (2007). Endogenous cardiac stem cells. Progress in Cardiovascular Diseases, 50(1), 31–48.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Davis, D. R., Kizana, E., Terrovitis, J., et al. (2010). Isolation and expansion of functionally-competent cardiac progenitor cells directly from heart biopsies. Journal of Molecular and Cellular Cardiology, 49(2), 312–321.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    D'Amario, D., Fiorini, C., Campbell, P. M., et al. (2011). Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circulation Research, 108(7), 857–861.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Beltrami, A. P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Ferreira-Martins, J., Ogorek, B., Cappetta, D., et al. (2012). Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circulation Research, 110(5), 701–715.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    He, J. Q., Vu, D. M., Hunt, G., Chugh, A., Bhatnagar, A., & Bolli, R. (2011). Human cardiac stem cells isolated from atrial appendages stably express c-kit. PLoS One, 6(11), e27719.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Zaruba, M. M., Soonpaa, M., Reuter, S., & Field, L. J. (2010). Cardiomyogenic potential of C-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation, 121(18), 1992–2000.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107(7), 913–922.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Craven, M., Kotlikoff, M. I., & Nadworny, A. S. (2012). C-kit expression identifies cardiac precursor cells in neonatal mice. Methods in Molecular Biology, 843, 177–189.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Li, Q., Guo, Y., Ou, Q., et al. (2011). Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Research in Cardiology, 106(5), 849–864.

    PubMed  Article  Google Scholar 

  40. 40.

    Oh, H., Bradfute, S. B., Gallardo, T. D., et al. (2003). Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12313–123138.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Matsuura, K., Nagai, T., Nishigaki, N., et al. (2004). Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. The Journal of Biological Chemistry, 279(12), 11384–11391.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    van Vliet, P., Roccio, M., Smits, A. M., et al. (2008). Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Netherlands Heart Journal, 16(5), 163–169.

    PubMed  Article  Google Scholar 

  43. 43.

    Wang, X., Hu, Q., Nakamura, Y., et al. (2006). The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells, 24(7), 1779–1788.

    PubMed  Article  Google Scholar 

  44. 44.

    Goumans, M. J., de Boer, T. P., Smits, A. M., et al. (2007). TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 1(2), 138–149.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Matsuura, K., Honda, A., Nagai, T., et al. (2009). Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. The Journal of Clinical Investigation, 119(8), 2204–2217.

    CAS  PubMed  Google Scholar 

  46. 46.

    Samal, R., Ameling, S., Wenzel, K., et al. (2012). OMICS-based exploration of the molecular phenotype of resident cardiac progenitor cells from adult murine heart. Journal of Proteomics, [Epub ahead of print] Jun 27.

  47. 47.

    Shi, C., Li, Q., Zhao, Y., et al. (2011). Stem-cell-capturing collagen scaffold promotes cardiac tissue regeneration. Biomaterials, 32(10), 2508–2515.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A., & Megeney, L. A. (2002). The post-natal heart contains a myocardial stem cell population. FEBS Letters, 530(1–3), 239–243.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Pfister, O., Oikonomopoulos, A., Sereti, K. I., et al. (2008). Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circulation Research, 103(8), 825–835.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Unno, K., Jain, M., & Liao, R. (2012). Cardiac side population cells: moving toward the center stage in cardiac regeneration. Circulation Research, 110(10), 1355–1363.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Oyama, T., Nagai, T., Wada, H., et al. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. The Journal of Cell Biology, 176(3), 329–341.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Liang, S. X., Tan, T. Y., Gaudry, L., & Chong, B. (2010). Differentiation and migration of Sca1+/CD31- cardiac side population cells in a murine myocardial ischemic model. International Journal of Cardiology, 138(1), 40–49.

    PubMed  Article  Google Scholar 

  53. 53.

    Wohlschlaeger, J., Levkau, B., Takeda, A., et al. (2012). Increase of ABCG2/BCRP+ side population stem cells in myocardium after ventricular unloading. The Journal of Heart and Lung Transplantation, 31(3), 318–324.

    PubMed  Article  Google Scholar 

  54. 54.

    Messina, E., De Angelis, L., Frati, G., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95(9), 911–921.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Li, T. S., Cheng, K., Malliaras, K., et al. (2012). Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. Journal of the American College of Cardiology, 59(10), 942–953.

    PubMed  Article  Google Scholar 

  56. 56.

    Ye, J., Boyle, A., Shih, H., et al. (2012). Sca-1+ cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. PLoS One, 7(1), e30329.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Smith, R. R., Barile, L., Cho, H. C., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Li, T. S., Cheng, K., Lee, S. T., et al. (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells, 28(11), 2088–2098.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Johnston, P. V., Sasano, T., Mills, K., et al. (2009). Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation, 120(12), 1075–1083. 7-1083.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Moretti, A., Lam, J., Evans, S. M., & Laugwitz, K. L. (2007). Biology of Isl1+ cardiac progenitor cells in development and disease. Cellular and Molecular Life Sciences, 64(6), 674–682.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Bu, L., Jiang, X., Martin-Puig, S., et al. (2009). Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 460(7251), 113–117.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Pandur, P., Sirbu, I. O., Kuhl, S. J., Philipp, M., & Kuhl, M. (2012). Islet1-expressing cardiac progenitor cells: a comparison across species. Development Genes and Evolution, [Epub ahead of print] Apr 24.

  63. 63.

    Genead, R., Danielsson, C., Andersson, A. B., et al. (2010). Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells and Development, 19(10), 1601–1615.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Moretti, A., Caron, L., Nakano, A., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127(6), 1151–1165.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Barzelay, A., Ben-Shoshan, J., Entin-Meer, M., et al. (2010). A potential role for islet-1 in post-natal angiogenesis and vasculogenesis. Thrombosis and Haemostasis, 103(1), 188–197.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Huang, C. Q., Kim, L., Gude, N., et al. (2008). Juvenile anthracycline treatment contributes to heart failure in adulthood by impairing vascularization and cardiac stem cell function. Circulation Research, 103(5), 66.

    Google Scholar 

  67. 67.

    Hosoda, T. (2012). C-kit-positive cardiac stem cells and myocardial regeneration. American Journal of Cardiovascular Diseases, 2(1), 58–67.

    CAS  Google Scholar 

  68. 68.

    Takamiya, M., Haider, K. H., & Ashraf, M. (2011). Identification and characterization of a novel multipotent sub-population of Sca-1(+) cardiac progenitor cells for myocardial regeneration. PLoS One, 6(9), e25265.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Borillo, G. A., Mason, M., Quijada, P., et al. (2010). Pim-1 kinase protects mitochondrial integrity in cardiomyocytes. Circulation Research, 106(7), 1265–1274.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Cottage, C. T., Bailey, B., Fischer, K. M., et al. (2010). Cardiac progenitor cell cycling stimulated by pim-1 kinase. Circulation Research, 106(5), 891–901.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Sundararaman, B., Avitabile, D., Konstandin, M. H., Cottage, C. T., Gude, N., & Sussman, M. A. (2012). Asymmetric chromatid segregation in cardiac progenitor cells is enhanced by Pim-1 kinase. Circulation Research, 110(9), 1169–1173.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Hosoda, T., D'Amario, D., Cabral-Da-Silva, M. C., et al. (2009). Clonality of mouse and human cardiomyogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 17169–17174.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Ferreira-Martins, J., Rondon-Clavo, C., Tugal, D., et al. (2009). Spontaneous calcium oscillations regulate human cardiac progenitor cell growth. Circulation Research, 105(8), 764–774.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Bailey, B., Izarra, A., Alvarez, R., et al. (2009). Cardiac stem cell genetic engineering using the alphaMHC promoter. Regenerative Medicine, 4(6), 823–833.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Bearzi, C., Rota, M., Hosoda, T., et al. (2007). Human cardiac stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14068–14073.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Bearzi, C., Leri, A., Lo, M. F., et al. (2009). Identification of a coronary vascular progenitor cell in the human heart. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15885–15890.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Barrilleaux, B., & Knoepfler, P. S. (2011). Inducing iPSCs to escape the dish. Cell Stem Cell, 9(2), 103–111.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Mohri, T., Fujio, Y., Maeda, M., et al. (2006). Leukemia inhibitory factor induces endothelial differentiation in cardiac stem cells. The Journal of Biological Chemistry, 281(10), 6442–6447.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Iwakura, T., Mohri, T., Hamatani, T., et al. (2011). STAT3/Pim-1 signaling pathway plays a crucial role in endothelial differentiation of cardiac resident Sca-1+ cells both in vitro and in vivo. Journal of Molecular and Cellular Cardiology, 51(12), 207–214.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Mohri, T., Fujio, Y., Obana, M., et al. (2009). Signals through glycoprotein 130 regulate the endothelial differentiation of cardiac stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(5), 754–760.

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Zakharova, L., Mastroeni, D., Mutlu, N., et al. (2010). Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovascular Research, 87(1), 40–49.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Suzuki, R., Li, T. S., Mikamo, A., et al. (2007). The reduction of hemodynamic loading assists self-regeneration of the injured heart by increasing cell proliferation, inhibiting cell apoptosis, and inducing stem-cell recruitment. The Journal of Thoracic and Cardiovascular Surgery, 133(4), 1051–1058.

    PubMed  Article  Google Scholar 

  83. 83.

    Wen, Z., Zheng, S., Zhou, C., Wang, J., & Wang, T. (2011). Repair mechanisms of bone marrow mesenchymal stem cells in myocardial infarction. Journal of Cellular and Molecular Medicine, 15(5), 1032–1043.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Wen, Z., Zheng, S., Zhou, C., Yuan, W., Wang, J., & Wang, T. (2012). Bone marrow mesenchymal stem cells for post-myocardial infarction cardiac repair: microRNAs as novel regulators. Journal of Cellular and Molecular Medicine, 16(4), 657–671.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Ratajczak, M. Z., Kucia, M., Jadczyk, T., et al. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Chimenti, I., Smith, R. R., Li, T. S., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106(5), 971–980.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Miyamoto, S., Kawaguchi, N., Ellison, G. M., Matsuoka, R., Shin'oka, T., & Kurosawa, H. (2010). Characterization of long-term cultured c-kit+ cardiac stem cells derived from adult rat hearts. Stem Cells and Development, 19(1), 105–116.

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    D'Amario, D., Cabral-Da-Silva, M. C., Zheng, H., et al. (2011). Insulin-like growth factor-1 receptor identifies a pool of human cardiac stem cells with superior therapeutic potential for myocardial regeneration. Circulation Research, 108(12), 1467–1481.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Padin-Iruegas, M. E., Misao, Y., Davis, M. E., et al. (2009). Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation, 120(10), 876–887.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Lu, G., Haider, H. K., Jiang, S., & Ashraf, M. (2009). Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation, 119(19), 2587–2596.

    PubMed  Article  Google Scholar 

  92. 92.

    Urbanek, K., Rota, M., Cascapera, S., et al. (2005). Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circulation Research, 97(7), 663–673.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Rota, M., Padin-Iruegas, M. E., Misao, Y., et al. (2008). Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103(1), 107–116.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Linke, A., Muller, P., Nurzynska, D., et al. (2005). Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8966–8971.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Gonzalez, A., Rota, M., Nurzynska, D., et al. (2008). Activation of cardiac progenitor cells reverses the failing heart senescent phenotype and prolongs lifespan. Circulation Research, 102(5), 597–606.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Kuijper, S., Turner, C. J., & Adams, R. H. (2007). Regulation of angiogenesis by Eph-ephrin interactions. Trends in Cardiovascular Medicine, 17(5), 145–151.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Pasquale, E. B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell, 133(1), 38–52.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Goichberg, P., Bai, Y., D'Amario, D., et al. (2011). The ephrin A1-EphA2 system promotes cardiac stem cell migration after infarction. Circulation Research, 108(9), 1071–1083.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Ellison, G. M., Torella, D., Dellegrottaglie, S., et al. (2011). Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. Journal of the American College of Cardiology, 58(9), 977–986.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Hu, X., Dai, S., Wu, W. J., et al. (2007). Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation, 116(6), 654–663.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Huang, C., Gu, H., Yu, Q., Manukyan, M. C., Poynter, J. A., & Wang, M. (2011). Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PLoS One, 6(12), e29246.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Tang, J. M., Wang, J. N., Zhang, L., et al. (2011). VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart. Cardiovascular Research, 91(3), 402–411.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Yu, J., Li, M., Qu, Z., Yan, D., Li, D., & Ruan, Q. (2010). SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells toward areas of heart myocardial infarction through activation of PI3K/Akt. Journal of Cardiovascular Pharmacology, 55(5), 496–505.

    CAS  PubMed  Google Scholar 

  104. 104.

    Kawaguchi, N., Nakao, R., Yamaguchi, M., Ogawa, D., & Matsuoka, R. (2010). TGF-beta superfamily regulates a switch that mediates differentiation either into adipocytes or myocytes in left atrium derived pluripotent cells (LA-PCS). Biochemical and Biophysical Research Communications, 396(3), 619–625.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Kawaguchi, N. (2011). Adult cardiac-derived stem cells: differentiation and survival regulators. Vitamins and Hormones, 87, 111–125.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Martin, L. K., Mezentseva, N. V., Bratoeva, M., Ramsdell, A. F., Eisenberg, C. A., & Eisenberg, L. M. (2011). Canonical WNT signaling enhances stem cell expression in the developing heart without a corresponding inhibition of cardiogenic differentiation. Stem Cells and Development, 20(11), 1973–1983.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Klaus, A., Muller, M., Schulz, H., Saga, Y., Martin, J. F., & Birchmeier, W. (2012). Wnt/beta-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 10921–10926.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Boni, A., Urbanek, K., Nascimbene, A., et al. (2008). Notch1 regulates the fate of cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15529–15534.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Mishra, P. K., Chavali, V., Metreveli, N., & Tyagi, S. C. (2012). Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Canadian Journal of Physiology and Pharmacology, 90(3), 353–360.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Zhang, X., Zhang, C. S., Liu, Y. C., et al. (2009). Isolation, culture and characterization of cardiac progenitor cells derived from human embryonic heart tubes. Cells, Tissues, Organs, 190(4), 194–208.

    PubMed  Article  Google Scholar 

  111. 111.

    Ortiz-Perez, J. T., Lee, D. C., Meyers, S. N., Davidson, C. J., Bonow, R. O., & Wu, E. (2010). Determinants of myocardial salvage during acute myocardial infarction: evaluation with a combined angiographic and CMR myocardial salvage index. JACC. Cardiovascular Imaging, 3(5), 491–500.

    PubMed  Article  Google Scholar 

  112. 112.

    Lee, S. T., White, A. J., Matsushita, S., et al. (2011). Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. Journal of the American College of Cardiology, 57(4), 455–465.

    PubMed  Article  Google Scholar 

  113. 113.

    Zheng, S., Zhou, C., Weng, Y., et al. (2011). Improvements of cardiac electrophysiologic stability and ventricular fibrillation threshold in rats with myocardial infarction treated with cardiac stem cells. Critical Care Medicine, 39(5), 1082–1088.

    PubMed  Article  Google Scholar 

  114. 114.

    de Boer, T. P., van Veen, T. A., Jonsson, M. K., et al. (2010). Human cardiomyocyte progenitor cell-derived cardiomyocytes display a maturated electrical phenotype. Journal of Molecular and Cellular Cardiology, 48(1), 254–260.

    PubMed  Article  CAS  Google Scholar 

  115. 115.

    Takehara, N., Tsutsumi, Y., Tateishi, K., et al. (2008). Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. Journal of the American College of Cardiology, 52(23), 1858–1865.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Makkar, R. R., Smith, R. R., Cheng, K., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 379(9819), 895–904.

    PubMed  Article  Google Scholar 

  117. 117.

    Bolli, R., Chugh, A. R., D'Amario, D., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378(9806), 1847–1857.

    PubMed  Article  Google Scholar 

  118. 118.

    Bollini, S., Smart, N., & Riley, P. R. (2011). Resident cardiac progenitor cells: at the heart of regeneration. Journal of Molecular and Cellular Cardiology, 50(2), 296–303.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Dib, N., Menasche, P., Bartunek, J. J., et al. (2010). Recommendations for successful training on methods of delivery of biologics for cardiac regeneration: a report of the International Society for Cardiovascular Translational Research. JACC. Cardiovascular Interventions, 3(3), 265–275.

    PubMed  Article  Google Scholar 

  120. 120.

    Ye, Z., Zhou, Y., Cai, H., & Tan, W. (2011). Myocardial regeneration: roles of stem cells and hydrogels. Advanced Drug Delivery Reviews, 63(8), 688–697.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Freed, L. E., Jr., Engelmayr, G. C., Borenstein, J. T., Moutos, F. T., & Guilak, F. (2009). Advanced material strategies for tissue engineering scaffolds. Advanced Materials, 21(12), 3410–3418.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Li, T. S., Cheng, K., Malliaras, K., et al. (2011). Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovascular Research, 89(1), 157–165.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Kurazumi, H., Kubo, M., Ohshima, M., et al. (2011). The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS One, 6(12), e28890.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Gao, H., Priebe, W., Glod, J., & Banerjee, D. (2009). Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells, 27(4), 857–865.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Saxena, A., Fish, J. E., White, M. D., et al. (2008). Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation, 117(17), 2224–2231.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No: 81070125 and 81270213), Science and Technology Foundation in Guangdong Province (No: 2010B031600032) and the Fundamental Research Funds for the Central Universities (09ykpy07).

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tong Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hou, J., Wang, L., Jiang, J. et al. Cardiac Stem Cells and their Roles in Myocardial Infarction. Stem Cell Rev and Rep 9, 326–338 (2013). https://doi.org/10.1007/s12015-012-9421-4

Download citation

Keywords

  • Cardiac stem cells
  • Myocardial infarction
  • Cell therapy
  • Myocardial regeneration
  • Cardiac repair