Stem Cell Reviews and Reports

, Volume 9, Issue 4, pp 435–450 | Cite as

Generation of Mouse and Human Induced Pluripotent Stem Cells (iPSC) from Primary Somatic Cells

  • I. M. Lorenzo
  • A. Fleischer
  • D. BachillerEmail author


Cellular reprogramming consists of the conversion of differentiated cells into pluripotent cells; the so-called induced Pluripotent Stem Cells. iPSC are amenable to in vitro manipulation and, in theory, direct production of any differentiated cell type. Furthermore, iPSC can be obtained from sick individuals and subsequently used for disease modeling, drug discovery and regenerative treatments. iPSC production was first achieved by transducing, with the use of retroviral vectors, four specific transcription factors: Oct4, Klf4, Sox2 and c-Myc (OKSM), into primary cells in culture Takahashi and Yamanaka, (Cell 126(4):663–676, 2006). Many alternative protocols have since been proposed: repeated transfections of expression plasmids containing the four pluripotency-associated genes Okita et al. (Science 322(5903):949–953, 2008), lentiviral delivery of the four factors Sommer et al. (Stem Cells 27(3):543–549, 2009), Sendai virus delivery Fusaki et al. (Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 85(8):348–362, 2009), removal of the reprogramming vectors by ‘piggyBac’ transposition Woltjen et al. (Nature 458(7239):766–770, 2009); Kaji et al. (Nature 458(7239):771–775, 2009), Cre-recombinase excisable viruses Soldner et al. (Cell 136(5):964–977, 2009), episomal vectors Yu et al. (Science 324(5928):797–801, 2009), cell-penetrating reprogramming proteins Zhou et al. (Stem Cells 4(5):381–384, 2009), mammalian artificial chromosomes Hiratsuka et al. (PLoS One 6(10):e25961, 2011) synthetically modified mRNAs Warren et al. (Scientific Reports 2:657, 2012), miRNA Anokye-Danso et al. (Cell Stem Cell 8(4):376–388, 2009); however, although some of these methods are commercially available, in general they still need to attain the reproducibility and reprogramming efficiency required for routine applications Mochiduki and Okita (Biotechnol Journal 7(6):789–797, 2012). Herein we explain, in four detailed protocols, the isolation of mouse and human somatic cells and their reprogramming into iPSC. All-encompassing instructions, not previously published in a single document, are provided for mouse and human iPSC colony isolation and derivation. Although mouse and human iPSC share similarities in the cellular reprogramming process and culture, both cell types need to be handled differently.


Induced pluripotent stem cells Cellular reprogramming Primary keratinocytes Primary mouse embryonic fibroblasts Retrovirus Feeder cells Cell derivation 



This work was supported by the MICINN-JDC and MICINN PLE2009-0091 and IPT-2011-1402-900000 grants. We are grateful to J.C. Izpisúa-Belmonte and T. Aasen from the Center of Regenerative Medicine in Barcelona (CRMB) for their help in establishing iPSC technology in our lab, as well as for the gift of human OKSM retroviral plasmids and Ecotropic Phoenix cells. We also thank S. Yamanaka for the gift of mouse OKSM retroviral plasmids, and M.V. Camarasa for technical advise on stem cell culture. We also thank the Balearic Islands University Institute for Biomedical Research (IUNICS) for the use of their facilities.

Conflict of interest

The authors declare no potential conflicts of interest.


  1. 1.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMedGoogle Scholar
  2. 2.
    Okita, K., Nakagawa, M., Hyenjong, H., et al. (2008). Generation of mouse induced pluripotent stem cells without viral vectors. Science, 322(5903), 949–953.CrossRefPubMedGoogle Scholar
  3. 3.
    Sommer, C. A., Stadtfeld, M., Murphy, G. J., et al. (2009). Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells, 27(3), 543–549.CrossRefPubMedGoogle Scholar
  4. 4.
    Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., & Hasegawa, M. (2009). Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 85(8), 348–362.CrossRefPubMedGoogle Scholar
  5. 5.
    Woltjen, K., Michael, I. P., Mohseni, P., et al. (2009). PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458(7239), 766–770.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaji, K., Norrby, K., Paca, A., et al. (2009). Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458(7239), 771–775.CrossRefPubMedGoogle Scholar
  7. 7.
    Soldner, F., Hockemeyer, D., Beard, C., et al. (2009). Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136(5), 964–977.CrossRefPubMedGoogle Scholar
  8. 8.
    Yu, J., Hu, K., Smuga-Otto, K., et al. (2009). Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324(5928), 797–801.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou, H., Wu, S., & Joo, J. Y. (2009). Generation of induced pluripotent stem cells using recombinant proteins. Stem Cells, 4(5), 381–384.Google Scholar
  10. 10.
    Hiratsuka, M., Uno, N., Ueda, K., et al. (2011). Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS One, 6(10), e25961.CrossRefPubMedGoogle Scholar
  11. 11.
    Warren, L., Ni, Y., Wang, J., & Guo, X. (2012). Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Scientific Reports, 2, 657.CrossRefPubMedGoogle Scholar
  12. 12.
    Anokye-Danso, F., Trivedi, C. M., Juhr, D., et al. (2009). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4), 376–388.CrossRefGoogle Scholar
  13. 13.
    Mochiduki, Y., & Okita, K. (2012). Methods for iPS cell generation for basic research and clinical applications. Biotechnol Journal, 7(6), 789–797.CrossRefGoogle Scholar
  14. 14.
    Maherali, N., & Hochedlinger, K. (2008). Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell, 3(6), 595–605.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim, J. B., Sebastiano, V., Wu, G., et al. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136(3), 411–419.CrossRefPubMedGoogle Scholar
  16. 16.
    Huangfu, D., Osafune, K., Maehr, R., et al. (2008). Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26(11), 1269–1275.CrossRefPubMedGoogle Scholar
  17. 17.
    Ware, C. B., Wang, L., Mecham, et al. (2009). Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell, 4(4), 359–369.CrossRefPubMedGoogle Scholar
  18. 18.
    Shi, Y., Do, J. T., Desponts, C., et al. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6), 525–528.CrossRefPubMedGoogle Scholar
  19. 19.
    Esteban, M. A., Wang, T., Qin, B., et al. (2009). Vitamin C enhances the generation of mouse.Google Scholar
  20. 20.
    Zhao, Y., Yin, X., Qin, H., et al. (2008). Two supporting factors greatly improve the efficiency of human iPS cells generation. Cell Stem Cell, 3(5), 475–479.CrossRefPubMedGoogle Scholar
  21. 21.
    Van den Boom, V., Kooistra, S. M., Boesjes, M., et al. (2007). UTF1 is a chromatin-associated protein involved in ES cell differentiation. The Journal of Cell Biology, 178(6), 913–924.CrossRefPubMedGoogle Scholar
  22. 22.
    Pirrone, A., Hager, B., & Fleckman, P. (2005). Primary mouse keratinocyte culture. Methods in Molecular Biology, 289, 3–14.PubMedGoogle Scholar
  23. 23.
    Lichti, U., Anders, J., & Yuspa, S. H. (2008). Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nature Protocols, 3(5), 799–810.CrossRefPubMedGoogle Scholar
  24. 24.
    Schnabel, L. V., Abratte, C. M., Schimenti, J. C., et al. (2012). Genetic background affects induced pluripotent stem cell generation. Stem Cell Research & Therapy, 3(4), 30.CrossRefGoogle Scholar
  25. 25.
    Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2(12), 3081–3089.CrossRefPubMedGoogle Scholar
  26. 26.
    Camarasa, M. V., Galvez, V. M., Brison, D. R., & Bachiller, D. (2012). Optimized protocol for derivation of human embryonic stem cell lines. Stem Cell Reviews and Reports, 8(3), 1011–1020.CrossRefPubMedGoogle Scholar
  27. 27.
    Camarasa, M., Brison, D., Kimber, S. J., & Handyside, A. H. (2009). Naturally immortalised mouse embryonic fibroblast lines support human embryonic stem cell growth. Cloning and Stem Cells, 11(3), 453–462.CrossRefPubMedGoogle Scholar
  28. 28.
    Swift, S., Lorens, J., Achacoso, P., & Nolan, G. P. (2001). Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293 T cell-based systems. Edited by John E.Coligan. Current Protocols in Immunology. Chapter 10, Unit 10.17C.Google Scholar
  29. 29.
    Aasen, T., & Belmonte, J. C. (2010). Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nature Protocols, 5(2), 371–382.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang, X. J. (2001). Preparation of recombinant retroviruses. Methods in Molecular Medicine, 47, 171–190.PubMedGoogle Scholar
  31. 31.
    Morita, S., Kojima, T., & Kitamura, T. (2000). Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Therapy, 7(12), 1063–1066.CrossRefPubMedGoogle Scholar
  32. 32.
    Klee, M., Pallauf, K., Alcalá, S., et al. (2009). Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of endoplasmic reticular Bak. EMBO Journal, 28(12), 1757–1768.CrossRefPubMedGoogle Scholar
  33. 33.
    Yu, S. S., Kim, J. M., & Kim, S. (2000). High efficiency retroviral vectors that contain no viral coding sequences. Gene Therapy, 7(9), 797–804.CrossRefPubMedGoogle Scholar
  34. 34.
    Swift, S., Lorens, J., Achacoso, P., Nolan, G. P. (2001). Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293 T cell-based systems. Current Protocols in Immunology, Chapter 10, Unit 10.17C.Google Scholar
  35. 35.
    Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.CrossRefPubMedGoogle Scholar
  36. 36.
    Ohnuki, M., Takahashi, K., Yamanaka, S. (2009). Generation and characterization of human induced pluripotent stem cells. Current Protocols in Stem Cell Biology, Chapter 4, Unit 4A.2.Google Scholar
  37. 37.
    Park, I. H., Lerou, P. H., Zhao, R., et al. (2008). Generation of human-induced pluripotent stem cells. Nature Protocols, 3(7), 1180–1186.CrossRefPubMedGoogle Scholar
  38. 38.
    Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: history, mechanisms, and applications. Genes & Development, 24(20), 2239–2263.CrossRefGoogle Scholar
  39. 39.
    Aasen, T., Raya, A., Barrero, M. J., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhao, X. Y., Li, W., Lv, Z., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260), 86–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Martins-Taylor, K., & Xu, R. H. (2012). Concise review: genomic stability of human induced pluripotent stem cells. Stem Cells, 30(1), 22–27.CrossRefPubMedGoogle Scholar
  42. 42.
    Lund, R. J., Närvä, E., & Lahesmaa, R. (2012). Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews Genetics, 13(10), 732–744.CrossRefPubMedGoogle Scholar
  43. 43.
    Nagy, A., Gertsenstein, M., Vintersten, K., Behringer, R. (2003). Manipulating the Mouse Embryo 3rd edition, Cold Spring Harbor Laboratory Press.Google Scholar
  44. 44.
    Nakagawa, M., Koyanagi, M., Tanabe, K., et al. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 26(1), 101–106.CrossRefPubMedGoogle Scholar
  45. 45.
    Bahnson, A. B., Dunigan, J. T., Baysal, B. E., et al. (1995). Centrifugal enhancement of retroviral mediated gene transfer. Journal of Virological Methods, 54(2–3), 131–143.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Caubet-Cimera Foundation, Centre for Advanced Respiratory MedicineBunyolaSpain
  2. 2.Consejo Superior de Investigaciones Científicas (CSIC)MallorcaSpain

Personalised recommendations