Effect of Anatomical Origin and Cell Passage Number on the Stemness and Osteogenic Differentiation Potential of Canine Adipose-Derived Stem Cells


Mesenchymal stem cells have a great potential for application in cell based therapies, such as tissue engineering. Adipose derived stem cells have shown the capacity to differentiate into several lineages, and have been isolated in many animal species. Dog is a very relevant animal model to study several human diseases and simultaneously an important subject in veterinary medicine. Thus, in this study we assessed the potential of canine adipose tissue derived stem cells (cASCs) to differentiate into the osteogenic and chondrogenic lineages by performing specific histological stainings, and studied the cell passaging effect on the cASCs stemness and osteogenic potential. We also evaluated the effect of the anatomical origin of the adipose tissue, namely from abdominal subcutaneous layer and from greater omentum. The stemness and osteogenic differentiation was followed by real time RT-PCR analysis of typical markers of mesenchymal stem cells (MSCs) and osteoblasts. The results obtained revealed that cASCs exhibit a progressively decreased expression of the MSCs markers along passages and also a decreased osteogenic differentiation potential. In the author’s knowledge, this work presents the first data about the MSCs markers profile and osteogenic potential of cASCs along cellular expansion. Moreover, the obtained data showed that the anatomical origin of the adipose tissue has an evident effect in the differentiation potential of the ASCs. Due to the observed resemblances with the human ASCs, we conclude that canine ASCs can be used as a model cells in tissue engineering research envisioning human applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Friedens, A. J., Petrakov, K. V., Kuroleso, A. I., & Frolova, G. P. (1968). Heterotopic transplants of bone marrow—analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.

    Article  Google Scholar 

  2. 2.

    Horwitz, E. M., Le Blanc, K., Dominici, M., et al. (2005). Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy, 7, 393–395.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Rada, T., Reis, R. L., & Gomes, M. E. (2009). Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Engineering Part B-Reviews, 15, 113–125.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Kern, S., Eichler, H., Stoeve, J., Kluter, H., & Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Jankowski, R. J., Deasy, B. M., & Huard, J. (2002). Muscle-derived stem cells. Gene Therapy, 9, 642–647.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Gage, F. H., Ray, J., & Fisher, L. J. (1995). Isolation, characterization, and use of stem-cells from the Cns. Annual Review of Neuroscience, 18, 159–192.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Noth, U., Osyczka, A. M., Tuli, R., et al. (2002). Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. Journal of Orthopaedic Research, 20, 1060–1069.

    PubMed  Article  Google Scholar 

  9. 9.

    Nakahara, H., Goldberg, V. M., & Caplan, A. I. (1991). Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. Journal of Orthopaedic Research, 9, 465–476.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Seo, B. M., Miura, M., Gronthos, S., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364, 149–155.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 13625–13630.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Miura, M., Gronthos, S., Zhao, M., et al. (2003). SHED—stem cells from human exfoliated deciduous teeth. Journal of Dental Research, 82, B305.

    Google Scholar 

  13. 13.

    Morsczeck, C., Gotz, W., Schierholz, J., et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24, 155–165.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Lechner, A., & Habener, J. F. (2003). Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus. American Journal of Physiology-Endocrinology and Metabolism, 284, E259–E266.

    PubMed  CAS  Google Scholar 

  15. 15.

    Mitchell, J. B., McIntosh, K., Zvonic, S., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376–385.

    PubMed  Article  Google Scholar 

  16. 16.

    Tapp, H., Hanley, E. N., Patt, J. C., & Gruber, H. E. (2009). Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Experimental Biology and Medicine, 234, 1–9.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    CAS  Google Scholar 

  18. 18.

    Fraser, J. A., & Huang, C. L. (2007). Quantitative techniques for steady-state calculation and dynamic integrated modelling of membrane potential and intracellular ion concentrations. Progress in Biophysics and Molecular Biology, 94, 336–372.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Gabbay, J. S., Heller, J. B., Mitchell, S. A., et al. (2006). Osteogenic potentiation of human adipose-derived stem cells in a 3-dimensional matrix. Annals of Plastic Surgery, 57, 89–93.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Gimble, J. M., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5, 362–369.

    PubMed  Article  Google Scholar 

  21. 21.

    Aust, L., Devlin, B., Foster, S. J., et al. (2004). Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 6, 7–14.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Mizuno, H., Zuk, P. A., Zhu, M., et al. (2002). Myogenic differentiation by human processed lipoaspirate cells. Plastic and Reconstructive Surgery, 109, 199–209.

    PubMed  Article  Google Scholar 

  23. 23.

    Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Sago, K., Tamahara, S., Tomihari, M., et al. (2008). In vitro differentiation of canine celiac adipose tissue-derived stromal cells into neuronal cells. Journal of Veterinary Medical Science, 70, 353–357.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Kang, S. K., Putnam, L. A., Ylostalo, J., et al. (2004). Neurogenesis of Rhesus adipose stromal cells. Journal of Cell Science, 117, 4289–4299.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Lim, J. H., Boozer, L., Mariani, C. L., Piedrahita, J. A., & Olby, N. J. (2010). Generation and characterization of neurospheres from canine adipose tissue-derived stromal cells. Cell Reprogram, 12, 417–425.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Richardson, L. E., Dudhia, J., Clegg, P. D., & Smith, R. (2007). Stem cells in veterinary medicine—attempts at regenerating equine tendon after injury. Trends in Biotechnology, 25, 409–416.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Lu, Z. F., Doulabi, B. Z., Wuisman, P. I., Bank, R. A., & Helder, M. N. (2007). Differentiation of adipose stem cells by nucleus pulposus cells: configuration effect. Biochemical and Biophysical Research Communications, 359, 991–996.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Wan, D. C., Siedhoff, M. T., Kwan, M. D., et al. (2007). Refining retinoic acid stimulation for osteogenic differentiation of murine adipose-derived adult stromal cells. Tissue Engineering, 13, 1623–1631.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Tobita, M., Uysal, A. C., Ogawa, R., Hyakusoku, H., & Mizuno, H. (2008). Periodontal tissue regeneration with adipose-derived stem cells. Tissue Engineering Part A, 14, 945–953.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Peptan, I. A., Hong, L., & Mao, J. J. (2006). Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits. Plastic and Reconstructive Surgery, 117, 1462–1470.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Martinez-Lorenzo, M. J., Royo-Canas, M., Alegre-Aguaron, E., et al. (2009). Phenotype and chondrogenic differentiation of mesenchymal cells from adipose tissue of different species. Journal of Orthopaedic Research, 27, 1499–1507.

    PubMed  Article  Google Scholar 

  33. 33.

    Carvalho, A. D., Alves, A. L. G., Golim, M. A., et al. (2009). Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine species adipose tissue. Veterinary Immunology and Immunopathology, 132, 303–306.

    Article  Google Scholar 

  34. 34.

    Izadpanah, R., Trygg, C., Patel, B., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99, 1285–1297.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Neupane, M., Chang, C.-C., Kiupel, M., & Yuzbasiyan-Gurkan, V. (2008). Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Engineering Part A, 14, 1007–1015.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Tobita, M., Mizuno, H., Uysal, C. A., Xin, G., & Hyakusoku, H. (2007). Behavior of adipose-derived stem cells in canine periodontal tissue regeneration. Stem Cells, 25, 3288.

    Google Scholar 

  37. 37.

    Vieira, N., Brandalise, V., Zucconi, E., et al. (2010). Isolation, characterization and differentiation potential of canine adipose-derived stem cells. Cell Transplant, 19, 279–289.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Wu, P. X., Sato, K., Yukawa, S., Hikasa, Y., & Kagota, K. (2001). Differentiation of stromal-vascular cells isolated from canine adipose tissues in primary culture. Journal of Veterinary Medical Science, 63, 17–23.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Black, L. L., Gaynor, J., Gahring, D., et al. (2007). Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Veterinary Therapeutics, 8, 272–284.

    PubMed  Google Scholar 

  40. 40.

    Oh, H. J., Park, J. E., Kim, M. J., et al. (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology, 75, 1221–1231.

    PubMed  Article  Google Scholar 

  41. 41.

    Cui, L., Liu, B., Liu, G., et al. (2007). Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials, 28, 5477–5486.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Albuquerque, C., Morinha, F., Requicha, J., et al. (2012). Canine periodontitis: the dog as an important model for periodontal studies. Veterinary Journal, 191, 299–305.

    Article  Google Scholar 

  43. 43.

    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Jaiswal, N., Haynesworth, S. E., Caplan, A. I., & Bruder, S. P. (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 64, 295–312.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Goncalves, A., Costa, P., Rodrigues, M. T., et al. (2011). Effect of flow perfusion conditions in the chondrogenic differentiation of bone marrow stromal cells cultured onto starch based biodegradable scaffolds. Acta Biomaterialia, 7, 1644–1652.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Spencer, N. D., Chun, R., Vidal, M. A., Gimble, J. M. & Lopez, M. J. (2012). In vitro expansion and differentiation of fresh and revitalized adult canine bone marrow-derived and adipose tissue-derived stromal cells. Veterinary Journal, 191, 231–239.

    Google Scholar 

  47. 47.

    Aksu, A. E., Rubin, J. P., Dudas, J. R., & Marra, K. G. (2008). Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Annals of Plastic Surgery, 60, 306–322.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Vidal, M. A., Kilroy, G. E., Lopez, M. J., et al. (2007). Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Veterinary Surgery, 36, 613–622.

    PubMed  Article  Google Scholar 

  49. 49.

    Afizah, H., Yang, Z., Hui, J. H. P., Ouyang, H. W., & Lee, E. H. (2007). A comparison between the chondrogenic potential of human bone marrow stem cells (BMSCs) and adipose-derived stem cells (ADSCs) taken from the same donors. Tissue Engineering, 13, 659–666.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Sachs, P. C., Francis, M. P., Zhao, M., et al. (2012). Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell and Tissue Research. doi:10.1007/s00441-012-1423-7

  51. 51.

    Baglioni, S., Francalanci, M., Squecco, R., et al. (2009). Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. Faseb Journal, 23, 3494–3505.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Braun, J., Hack, A., Weis-Klemm, M., et al. (2010). Evaluation of the osteogenic and chondrogenic differentiation capacities of equine adipose tissue-derived mesenchymal stem cells. American Journal of Veterinary Research, 71, 1228–1236.

    PubMed  Article  Google Scholar 

  53. 53.

    Avram, A. S., Avram, M. M., & James, W. D. (2005). Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. Journal of the American Academy of Dermatology, 53, 671–683.

    PubMed  Article  Google Scholar 

  54. 54.

    Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., et al. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8, 166–177.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Dragoo, J. L., Samimi, B., Zhu, M., et al. (2003). Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. Journal of Bone and Joint Surgery-British Volume, 85B, 740–747.

    Google Scholar 

  56. 56.

    Sanz-Rodriguez, F., Guerrero-Esteo, M., Botella, L. M., et al. (2004). Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. Journal of Biological Chemistry, 279, 32858–32868.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Schwarz, C., Leicht, U., Rothe, C., et al. (2012). Effects of different media on proliferation and differentiation capacity of canine, equine and porcine adipose derived stem cells. Research in Veterinary Science, 93, 457–462.

    PubMed  Article  Google Scholar 

  58. 58.

    Halvorsen, Y. D., Franklin, D., Bond, A. L., et al. (2001). Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Engineering, 7, 729–741.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Alonso, M., Claros, S., Becerra, J., & Andrades, J. A. (2008). The effect of type I collagen on osteochondrogenic differentiation in adipose-derived stromal cells in vivo. Cytotherapy, 10, 597–610.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Prunet-Marcassus, B., Cousin, B., Caton, D., et al. (2006). From heterogeneity to plasticity in adipose tissues: site-specific differences. Experimental Cell Research, 312, 727–736.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Reich, C. M., Raabe, O., Wenisch, S., et al. (2012). Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells–a comparative study. Veterinary Research Communications, 36, 139–148

    Google Scholar 

Download references


Authors acknowledge the support from the Portuguese Foundation for Science and Technology (FCT) project (ref. MIT/ECE/0047/2009) and for João Filipe Requicha PhD scholarship (SFRH/BD/44143/2008).

Conflict of interest statement

None of the authors has any financial or personal relationships that could inappropriately influence or bias the content of the paper.

Author information



Corresponding author

Correspondence to Manuela E. Gomes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Requicha, J.F., Viegas, C.A., Albuquerque, C.M. et al. Effect of Anatomical Origin and Cell Passage Number on the Stemness and Osteogenic Differentiation Potential of Canine Adipose-Derived Stem Cells. Stem Cell Rev and Rep 8, 1211–1222 (2012). https://doi.org/10.1007/s12015-012-9397-0

Download citation


  • Adipose-derived stem cells
  • Cell based therapies
  • Tissue engineering
  • Canine model
  • Stemness
  • Osteogenic potential