Skip to main content

Advertisement

Log in

Mesenchymal Stromal Cell Phenotype is not Influenced by Confluence during Culture Expansion

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Accumulating preclinical and clinical evidence indicates that human mesenchymal stromal cells (MSCs) are good candidates for cell therapy. For clinical applications of MSCs extensive in vitro expansion is required to obtain an adequate number of cells. It is evident that the pursuit for cell quantity must not affect quality, but it is also a fact that in vitro culture conditions affect MSC phenotype. One possible variable is the degree of cell confluence during expansion.

Methods

We investigate the influence of cell density on homogeneity and differentiation during culture expansion of un-stimulated MSCs isolated from the bone marrow in DMEM and fetal bovine serum (FBS).

MSC morphology, phenotype and differentiation were investigated weekly during 5 weeks culture expansion using electron microscopy, flow cytometry, immunocytochemistry, qualitative RT-PCR and quantitative Q-PCR.

Results

The morphological observation and the phenotypic analyses showed that MSCs after 3 weeks cultivation constituted a phenotypically homogenous MSC cell population, which at low levels expressed genes for different cell lineages, confirming their multilineage plasticity, without actual differentiation. This phenotype persisted independent of increasing cell densities.

Discussion

These data demonstrate that MSC characteristics and plasticity can be maintained during culture expansion from bone marrow mononuclear cells to MSCs and that a homogeneous phenotype of undifferentiated MSCs which persists independent of cell density can be used for clinical therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haack-Sorensen, M., Friis, T., & Kastrup, J. (2008). Mesenchymal stromal cell and mononuclear cell therapy in heart disease. Future Cardiology, 4(5), 481–494.

    PubMed  Google Scholar 

  2. Kassem, M., & Abdallah, B. M. (2008). Human bone-marrow-derived mesenchymal stem cells: biological characteristics and potential role in therapy of degenerative diseases. Cell and Tissue Research, 331(1), 157–163.

    PubMed  Google Scholar 

  3. Mathiasen, A. B., Haack-Sorensen, M., & Kastrup, J. (2009). Mesenchymal stromal cells for cardiovascular repair: current status and future challenges. Future Cardiology, 5(6), 605–617.

    CAS  PubMed  Google Scholar 

  4. Janssens, S. (2010). Stem cells in the treatment of heart disease. Annual Review of Medicine, 61, 287–300.

    CAS  PubMed  Google Scholar 

  5. Kastrup, J. (2011). Stem cell therapy for cardiovascular repair in ischemic heart disease: how to predict and secure optimal outcome? EPMA J. In Press.

  6. Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of Cellular Physiology, 181(1), 67–73.

    CAS  PubMed  Google Scholar 

  7. Deans, R. J., & Moseley, A. B. (2000). Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology, 28(8), 875–884.

    CAS  PubMed  Google Scholar 

  8. Minguell, J. J., Erices, A., & Conget, P. (2001). Mesenchymal stem cells. Experimental Biology and Medicine (Maywood, N.J.), 226(6), 507–520.

    CAS  Google Scholar 

  9. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    CAS  PubMed  Google Scholar 

  10. Bartholomew, A., Sturgeon, C., Siatskas, M., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30(1), 42–48.

    PubMed  Google Scholar 

  11. Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.

    CAS  PubMed  Google Scholar 

  12. Tyndall, A., Walker, U. A., Cope, A., et al. (2007). Immunomodulatory properties of mesenchymal stem cells: a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division, London, UK, 31 October 2005. Arthritis Research & Therapy, 9(1), 301.

    Google Scholar 

  13. Kinnaird, T., Stabile, E., Burnett, M. S., et al. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circulation Research, 94(5), 678–685.

    CAS  PubMed  Google Scholar 

  14. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cell, 25(11), 2896–2902.

    Google Scholar 

  15. Resnick, I., Stepensky, P., Elkin, G., et al. (2010). MSC for the improvement of hematopoietic engraftment. Bone Marrow Transplantation, 45(3), 605–606.

    CAS  PubMed  Google Scholar 

  16. Yoshikawa, T., Mitsuno, H., Nonaka, I., et al. (2008). Wound therapy by marrow mesenchymal cell transplantation. Plastic and Reconstructive Surgery, 121(3), 860–877.

    CAS  PubMed  Google Scholar 

  17. Mazzini, L., Ferrero, I., Luparello, V., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial. Experimental Neurology, 223(1), 229–237.

    CAS  PubMed  Google Scholar 

  18. Chen, S. L., Fang, W. W., Ye, F., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. The American Journal of Cardiology, 94(1), 92–95.

    PubMed  Google Scholar 

  19. Friis, T., Haack-Sørensen, M., Mathiasen, A. B., et al. (2011). Mesenchymal stromal cell derived endothelial progenitor cell treatment in patients with severe refractory angina. Scandinavian Cardiovascular Journal, 45(3), 161–168.

    PubMed  Google Scholar 

  20. Haack-Sørensen, M., Friis, T., Mathiasen, A.B. et al. (2012). Mesenchymal stromal therapy in patients with severe refractory angina - one year follow-up. Cell Transplant, In Press.

  21. Katritsis, D. G., Sotiropoulou, P. A., Karvouni, E., et al. (2005). Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheterization and Cardiovascular Interventions, 65(3), 321–329.

    PubMed  Google Scholar 

  22. Katritsis, D. G., Sotiropoulou, P., Giazitzoglou, E., Karvouni, E., & Papamichail, M. (2007). Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells. Europace, 9(3), 167–171.

    PubMed  Google Scholar 

  23. Mohyeddin-Bonab, M., Mohamad-Hassani, M. R., Alimoghaddam, K., et al. (2007). Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Archives of Iranian Medicine, 10(4), 467–473.

    PubMed  Google Scholar 

  24. Bruder, S. P., Fink, D. J., & Caplan, A. I. (1994). Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. Journal of Cellular Biochemistry, 56(3), 283–294.

    CAS  PubMed  Google Scholar 

  25. Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213(2), 341–347.

    CAS  PubMed  Google Scholar 

  26. Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., & Papamichail, M. (2006). Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells, 24(5), 1409–1410.

    PubMed  Google Scholar 

  27. Neuhuber, B., Swanger, S. A., Howard, L., Mackay, A., & Fischer, I. (2008). Effects of plating density and culture time on bone marrow stromal cell characteristics. Experimental Hematology, 36(9), 1176–1185.

    PubMed  PubMed Central  Google Scholar 

  28. Wagner, W., Horn, P., Castoldi, M., et al. (2008). Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One, 3(5), e2213.

    PubMed  PubMed Central  Google Scholar 

  29. World Medical Association Declaration of Helsinki. (2007). Recommendations guiding physicians in biomedical research involving human subjects. Cardiovascular Research, 35(1), 2–3.

    Google Scholar 

  30. Gaster, M., Kristensen, S. R., Beck-Nielsen, H., & Schroder, H. D. (2001). A cellular model system of differentiated human myotubes. APMIS, 109(11), 735–744.

    CAS  PubMed  Google Scholar 

  31. Pasquinelli, G., Tazzari, P., Ricci, F., et al. (2007). Ultrastructural characteristics of human mesenchymal stromal (stem) cells derived from bone marrow and term placenta. Ultrastructural Pathology, 31(1), 23–31.

    PubMed  Google Scholar 

  32. Steinert, A., Weber, M., Dimmler, A., et al. (2003). Chondrogenic differentiation of mesenchymal progenitor cells encapsulated in ultrahigh-viscosity alginate. Journal of Orthopaedic Research, 21(6), 1090–1097.

    CAS  PubMed  Google Scholar 

  33. DiGirolamo, C. M., Stokes, D., Colter, D., Phinney, D. G., Class, R., & Prockop, D. J. (1999). Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British Journal of Haematology, 107(2), 275–281.

    CAS  PubMed  Google Scholar 

  34. Colter, D. C., Class, R., DiGirolamo, C. M., & Prockop, D. J. (2000). Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3213–3218.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Prockop, D. J., Brenner, M., Fibbe, W. E., et al. (2010). Defining the risks of mesenchymal stromal cell therapy. Cytotherapy, 12(5), 576–578.

    PubMed  Google Scholar 

  36. Pieri, L., Urbani, S., Mazzanti, B., et al. (2011). Human mesenchymal stromal cells preserve their stem features better when cultured in the Dulbecco’s modified Eagle medium. Cytotherapy, 13(5), 539–548.

    CAS  PubMed  Google Scholar 

  37. Dominici, M., Le, B. K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    CAS  PubMed  Google Scholar 

  38. Haack-Sorensen, M., Bindslev, L., Mortensen, S., Friis, T., & Kastrup, J. (2007). The influence of freezing and storage on the characteristics and functions of human mesenchymal stromal cells isolated for clinical use. Cytotherapy, 9(4), 328–337.

    CAS  PubMed  Google Scholar 

  39. Kassem, M., Kristiansen, M., & Abdallah, B. M. (2004). Mesenchymal stem cells: cell biology and potential use in therapy. Basic & Clinical Pharmacology & Toxicology, 95(5), 209–214.

    CAS  Google Scholar 

  40. Friis, T., Haack-Sorensen, M., Hansen, S. K., Hansen, L., Bindslev, L., & Kastrup, J. (2011). Comparison of mesenchymal stromal cells from young healthy donors and patients with severe chronic coronary artery disease. Scandinavian Journal of Clinical and Laboratory Investigation, 71(3), 193–202.

    CAS  PubMed  Google Scholar 

  41. Sekiya, I., Larson, B. L., Smith, J. R., Pochampally, R., Cui, J. G., & Prockop, D. J. (2002). Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells, 20(6), 530–541.

    PubMed  Google Scholar 

  42. Hung, S. C., Cheng, H., Pan, C. Y., Tsai, M. J., Kao, L. S., & Ma, H. L. (2002). In vitro differentiation of size-sieved stem cells into electrically active neural cells. Stem Cells, 20(6), 522–529.

    CAS  PubMed  Google Scholar 

  43. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164(2), 247–256.

    CAS  PubMed  Google Scholar 

  44. Makino, S., Fukuda, K., Miyoshi, S., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinical Investigation, 103(5), 697–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Reyes, M., Dudek, A., Jahagirdar, B., Koodie, L., Marker, P. H., & Verfaillie, C. M. (2002). Origin of endothelial progenitors in human postnatal bone marrow. The Journal of Clinical Investigation, 109(3), 337–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kang, X. Q., Zang, W. J., Song, T. S., et al. (2005). Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro. World Journal of Gastroenterology, 11(22), 3479–3484.

    PubMed  PubMed Central  Google Scholar 

  47. Denizot, Y., Trimoreau, F., & Praloran, V. (1998). Effects of lipid mediators on the synthesis of leukaemia inhibitory factor and interleukin 6 by human bone marrow stromal cells. Cytokine, 10(10), 781–785.

    CAS  PubMed  Google Scholar 

  48. Rougier, F., Cornu, E., Praloran, V., & Denizot, Y. (1998). IL-6 and IL-8 production by human bone marrow stromal cells. Cytokine, 10(2), 93–97.

    CAS  PubMed  Google Scholar 

  49. Shahdadfar, A., Fronsdal, K., Haug, T., Reinholt, F. P., & Brinchmann, J. E. (2005). In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 23(9), 1357–1366.

    CAS  PubMed  Google Scholar 

  50. Gnecchi, M., He, H., Liang, O. D., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine, 11(4), 367–368.

    CAS  PubMed  Google Scholar 

  51. Hegner, B., Weber, M., Dragun, D., & Schulze-Lohoff, E. (2005). Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. Journal of Hypertension, 23(6), 1191–1202.

    CAS  PubMed  Google Scholar 

  52. Chichester, C. O., Fernandez, M., & Minguell, J. J. (1993). Extracellular matrix gene expression by human bone marrow stroma and by marrow fibroblasts. Cell Adhesion and Communication, 1(2), 93–99.

    CAS  PubMed  Google Scholar 

  53. Sensebe, L., Bourin, P., & Tarte, K. (2011). Good Manufacturing Practices Production of Mesenchymal Stem/Stromal Cells. Human Gene Therapy, 22(1), 19–26.

    CAS  PubMed  Google Scholar 

  54. Gregory, C. A., Prockop, D. J., & Spees, J. L. (2005). Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Experimental Cell Research, 306(2), 330–335.

    CAS  PubMed  Google Scholar 

  55. Fink, T., Rasmussen, J. G., Lund, P., Pilgaard, L., Soballe, K., & Zachar, V. (2011). Isolation and expansion of adipose-derived stem cells for tissue engineering. Frontiers in Bioscience (Elite Edition), 3, 256–263.

    Google Scholar 

  56. Lee, J. W., Kim, Y. H., Park, K. D., Jee, K. S., Shin, J. W., & Hahn, S. B. (2004). Importance of integrin beta1-mediated cell adhesion on biodegradable polymers under serum depletion in mesenchymal stem cells and chondrocytes. Biomaterials, 25(10), 1901–1909.

    CAS  PubMed  Google Scholar 

  57. Tao, H., Rao, R., & Ma, D. D. (2005). Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Development, Growth & Differentiation, 47(6), 423–433.

    CAS  Google Scholar 

  58. Solmesky, L., Lefler, S., Jacob-Hirsch, J., Bulvik, S., Rechavi, G., & Weil, M. (2010). Serum free cultured bone marrow mesenchymal stem cells as a platform to characterize the effects of specific molecules. PLoS One, 5(9), e12689. pii.

    PubMed  PubMed Central  Google Scholar 

  59. Kume, T., Taguchi, R., Katsuki, H., et al. (2006). Serofendic acid, a neuroprotective substance derived from fetal calf serum, inhibits mitochondrial membrane depolarization and caspase-3 activation. European Journal of Pharmacology, 542(1–3), 69–76.

    CAS  PubMed  Google Scholar 

  60. Le, B. K., Samuelsson, H., Gustafsson, B., et al. (2007). Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia, 21(8), 1733–1738.

    Google Scholar 

  61. Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67(19), 9142–9149.

    CAS  PubMed  Google Scholar 

  62. Dahl, J. A., Duggal, S., Coulston, N., et al. (2008). Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. International Journal of Developmental Biology, 52(8), 1033–1042.

    CAS  Google Scholar 

  63. Tarte, K., Gaillard, J., Lataillade, J. J., et al. (2010). Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 115(8), 1549–1553.

    CAS  PubMed  Google Scholar 

  64. Zhang, Z. X., Guan, L. X., Zhang, K., et al. (2007). Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biology International, 31(6), 645–648.

    CAS  PubMed  Google Scholar 

  65. Doerr, H. W., Cinatl, J., Sturmer, M., & Rabenau, H. F. (2003). Prions and orthopedic surgery. Infection, 31(3), 163–171.

    CAS  PubMed  Google Scholar 

  66. Haack-Sorensen, M., Friis, T., Bindslev, L., Mortensen, S., Johnsen, H. E., & Kastrup, J. (2008). Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy. Scandinavian Journal of Clinical and Laboratory Investigation, 68(3), 192–203.

    CAS  PubMed  Google Scholar 

  67. Aldahmash, A., Haack-Sorensen, M., Al-Nbaheen, M., Harkness, L., Abdallah, B. M., & Kassem, M. (2011). Human serum is as efficient as fetal bovine serum in supporting proliferation and differentiation of human multipotent stromal (mesenchymal) stem cells in vitro and in vivo. Stem Cell Reviews, 7(4), 860–868.

    Google Scholar 

  68. Horwitz, E. M., Gordon, P. L., Koo, W. K., et al. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8932–8937.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lazarus, H. M., Koc, O. N., Devine, S. M., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation, 11(5), 389–398.

    PubMed  Google Scholar 

  70. Le, B. K., Rasmusson, I., Sundberg, B., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363(9419), 1439–1441.

    Google Scholar 

  71. Le Ricousse-Roussanne, S., Larghero, J., Zini, J. M., et al. (2007). Ex vivo generation of mature and functional human smooth muscle cells differentiated from skeletal myoblasts. Experimental Cell Research, 313(7), 1337–1346.

    PubMed  Google Scholar 

  72. Abdallah, B. M., Haack-Sorensen, M., Burns, J. S., et al. (2005). Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochemical and Biophysical Research Communications, 326(3), 527–538.

    CAS  PubMed  Google Scholar 

  73. Sekiya, I., Vuoristo, J. T., Larson, B. L., & Prockop, D. J. (2002). In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4397–4402.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Irene Lynfort, Louise Degn Neilsen, Robert Burdorf and Hanne Holm for their technical support. The study was supported by research grants from the Aase and Ejnar Danielsen Foundation, the Research Foundation at Rigshospitalet, FP7 Health-2007-2.4.2.-5, grand no. 222995and the Danish Medical Research Council.

Competing interest statement

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kastrup.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haack-Sørensen, M., Hansen, S.K., Hansen, L. et al. Mesenchymal Stromal Cell Phenotype is not Influenced by Confluence during Culture Expansion. Stem Cell Rev and Rep 9, 44–58 (2013). https://doi.org/10.1007/s12015-012-9386-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9386-3

Keywords

Navigation