Skip to main content
Log in

Targeting Pancreatic Progenitor Cells in Human Embryonic Stem Cell Differentiation for the Identification of Novel Cell Surface Markers

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

New sources of beta cells are needed in order to develop cell therapies for patients with diabetes. An alternative to forced expansion of post-mitotic beta cells is the induction of differentiation of stem-cell derived progenitor cells that have a natural self-expansion capacity into insulin-producing cells. In order to learn more about these progenitor cells at different stages along the differentiation process in which they become progressively more committed to the final beta cell fate, we took the approach of identifying, isolating and characterizing stage specific progenitor cells. We generated human embryonic stem cell (HESC) clones harboring BAC GFP reporter constructs of SOX17, a definitive endoderm marker, and PDX1, a pancreatic marker, and identified subpopulations of GFP expressing cells. Using this approach, we isolated a highly enriched population of pancreatic progenitor cells from hESCs and examined their gene expression with an emphasis on the expression of stage-specific cell surface markers. We were able to identify novel molecules that are involved in the pancreatic differentiation process, as well as stage-specific cell markers that may serve to define (alone or in combination with other markers) a specific pancreatic progenitor cell. These findings may help in optimizing conditions for ultimately generating and isolating beta cells for transplantation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. White, S. A., Shaw, J. A., & Sutherland, D. E. (2009). Pancreas transplantation. Lancet, 373, 1808–1817.

    Article  PubMed  CAS  Google Scholar 

  2. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., & Benvenisty, N. (2000). Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine, 6, 88–95.

    PubMed  CAS  Google Scholar 

  3. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., & Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 11307–11312.

    Article  PubMed  CAS  Google Scholar 

  4. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  5. D'Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., Moorman, M. A., Kroon, E., Carpenter, M. K., Baetge, E. E., D'Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 24, 1392–1401.

    Article  PubMed  Google Scholar 

  6. Jiang, J., Au, M., Lu, K., Eshpeter, A., Korbutt, G., Fisk, G., & Majumdar, A. S. (2007). Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells, 25, 1940–1953.

    Article  PubMed  CAS  Google Scholar 

  7. Jiang, W., Shi, Y., Zhao, D., Chen, S., Yong, J., Zhang, J., Qing, T., Sun, X., Zhang, P., Ding, M., Li, D., & Deng, H. (2007). In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Research, 17, 333–344.

    Article  PubMed  CAS  Google Scholar 

  8. Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., Young, H., Richardson, M., Smart, N. G., Cunningham, J., Agulnick, A. D., D'Amour, K. A., Carpenter, M. K., & Baetge, E. E. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26, 443–452.

    Article  PubMed  CAS  Google Scholar 

  9. Segev, H., Fishman, B., Ziskind, A., Shulman, M., & Itskovitz-Eldor, J. (2004). Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells, 22, 265–274.

    Article  PubMed  CAS  Google Scholar 

  10. Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., & Melton, D. A. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 106, 15768–15773.

    Article  PubMed  CAS  Google Scholar 

  11. Tateishi, K., He, J., Taranova, O., Liang, G., D'Alessio, A. C., & Zhang, Y. (2008). Generation of insulin-secreting islet-like clusters from human skin fibroblasts. Journal of Biological Chemistry, 283, 31601–31607.

    Article  PubMed  CAS  Google Scholar 

  12. Wells, J. M., & Melton, D. A. (1999). Vertebrate endoderm development. Annual Review of Cell and Developmental Biology, 15, 393–410.

    Article  PubMed  CAS  Google Scholar 

  13. Holland, A. M., Micallef, S. J., Li, X., Elefanty, A. G., & Stanley, E. G. (2006). A mouse carrying the green fluorescent protein gene targeted to the Pdx1 locus facilitates the study of pancreas development and function. Genesis, 44, 304–307.

    Article  PubMed  CAS  Google Scholar 

  14. Amit, M., & Itskovitz-Eldor, J. (2002). Derivation and spontaneous differentiation of human embryonic stem cells. Journal of Anatomy, 200, 225–232.

    Article  PubMed  Google Scholar 

  15. Biancotti, J. C., Narwani, K., Buehler, N., Mandefro, B., Golan-Lev, T., Yanuka, O., Clark, A., Hill, D., Benvenisty, N., & Lavon, N. (2010). Human embryonic stem cells as models for aneuploid chromosomal syndromes. Stem Cells, 28, 1530–1540.

    Article  PubMed  CAS  Google Scholar 

  16. Lavon, N., Narwani, K., Golan-Lev, T., Buehler, N., Hill, D., & Benvenisty, N. (2008). Derivation of euploid human embryonic stem cells from aneuploid embryos. Stem Cells, 26, 1874–1882.

    Article  PubMed  CAS  Google Scholar 

  17. Amit, M., Shariki, C., Margulets, V., & Itskovitz-Eldor, J. (2004). Feeder layer- and serum-free culture of human embryonic stem cells. Biology of Reproduction, 70, 837–845. Epub 2003 Nov 2019.

    Article  PubMed  CAS  Google Scholar 

  18. Copeland, N. G., Jenkins, N. A., & Court, D. L. (2001). Recombineering: a powerful new tool for mouse functional genomics. Nature Reviews. Genetics, 2, 769–779.

    Article  PubMed  CAS  Google Scholar 

  19. Zwaka, T. P., & Thomson, J. A. (2003). Homologous recombination in human embryonic stem cells. Nature Biotechnology, 21, 319–321.

    Article  PubMed  CAS  Google Scholar 

  20. D'Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol, 23, 1534–1541. Epub 2005 Oct 1528.

    Article  PubMed  Google Scholar 

  21. Yasunaga, M., Tada, S., Torikai-Nishikawa, S., Nakano, Y., Okada, M., Jakt, L. M., Nishikawa, S., Chiba, T., Era, T., & Nishikawa, S. (2005). Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nature Biotechnology, 23, 1542–1550. Epub 2005 Nov 1527.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, P., Rodriguez, R. T., Wang, J., Ghodasara, A., & Kim, S. K. (2011). Targeting SOX17 in human embryonic stem cells creates unique strategies for isolating and analyzing developing endoderm. Cell Stem Cell, 8, 335–346.

    Article  PubMed  Google Scholar 

  23. Jiang, W., Sui, X., Zhang, D., Liu, M., Ding, M., Shi, Y., & Deng, H. (2011). CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells, 29, 609–617.

    Article  PubMed  CAS  Google Scholar 

  24. Chen, S., Borowiak, M., Fox, J. L., Maehr, R., Osafune, K., Davidow, L., Lam, K., Peng, L. F., Schreiber, S. L., Rubin, L. L., & Melton, D. (2009). A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chemical Biology, 5, 258–265.

    Article  PubMed  CAS  Google Scholar 

  25. Frandsen, U., Porneki, A. D., Floridon, C., Abdallah, B. M., & Kassem, M. (2007). Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochemical and Biophysical Research Communications, 362, 568–574.

    Article  PubMed  CAS  Google Scholar 

  26. Shi, Y., Hou, L., Tang, F., Jiang, W., Wang, P., Ding, M., & Deng, H. (2005). Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells, 23, 656–662.

    Article  PubMed  CAS  Google Scholar 

  27. Shim, J. H., Kim, S. E., Woo, D. H., Kim, S. K., Oh, C. H., McKay, R., & Kim, J. H. (2007). Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia, 50, 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  28. Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., & Yamanaka, S. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27, 743–745.

    Article  PubMed  CAS  Google Scholar 

  29. Lavon, N., Yanuka, O., & Benvenisty, N. (2004). Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation, 72, 230–238.

    Article  PubMed  CAS  Google Scholar 

  30. Shizuya, H., & Kouros-Mehr, H. (2001). The development and applications of the bacterial artificial chromosome cloning system. The Keio Journal of Medicine, 50, 26–30.

    Article  PubMed  CAS  Google Scholar 

  31. Kanai, Y., Kanai-Azuma, M., Noce, T., Saido, T. C., Shiroishi, T., Hayashi, Y., & Yazaki, K. (1996). Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. The Journal of Cell Biology, 133, 667–681.

    Article  PubMed  CAS  Google Scholar 

  32. Gu, G., Dubauskaite, J., & Melton, D. A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129, 2447–2457.

    PubMed  CAS  Google Scholar 

  33. Chaste, P., Clement, N., Mercati, O., Guillaume, J. L., Delorme, R., Botros, H. G., Pagan, C., Perivier, S., Scheid, I., Nygren, G., Anckarsater, H., Rastam, M., Stahlberg, O., Gillberg, C., Serrano, E., Lemiere, N., Launay, J. M., Mouren-Simeoni, M. C., Leboyer, M., Gillberg, C., Jockers, R., & Bourgeron, T. (2010). Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population. PloS One, 5, e11495.

    Article  PubMed  Google Scholar 

  34. Levoye, A., Dam, J., Ayoub, M. A., Guillaume, J. L., Couturier, C., Delagrange, P., & Jockers, R. (2006). The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. EMBO Journal, 25, 3012–3023.

    Article  PubMed  CAS  Google Scholar 

  35. Ivanova, E. A., Bechtold, D. A., Dupre, S. M., Brennand, J., Barrett, P., Luckman, S. M., & Loudon, A. S. (2008). Altered metabolism in the melatonin-related receptor (GPR50) knockout mouse. American Journal of Physiology, Endocrinology and Metabolism, 294, E176–E182.

    Article  CAS  Google Scholar 

  36. Fong, D., Moser, P., Krammel, C., Gostner, J. M., Margreiter, R., Mitterer, M., Gastl, G., & Spizzo, G. (2008). High expression of TROP2 correlates with poor prognosis in pancreatic cancer. British Journal of Cancer, 99, 1290–1295.

    Article  PubMed  CAS  Google Scholar 

  37. Fong, D., Spizzo, G., Gostner, J. M., Gastl, G., Moser, P., Krammel, C., Gerhard, S., Rasse, M., & Laimer, K. (2008). TROP2: a novel prognostic marker in squamous cell carcinoma of the oral cavity. Modern Pathology, 21, 186–191.

    PubMed  CAS  Google Scholar 

  38. Ohmachi, T., Tanaka, F., Mimori, K., Inoue, H., Yanaga, K., & Mori, M. (2006). Clinical significance of TROP2 expression in colorectal cancer. Clinical Cancer Research, 12, 3057–3063.

    Article  PubMed  CAS  Google Scholar 

  39. Chang, C. H., Gupta, P., Michel, R., Loo, M., Wang, Y., Cardillo, T. M., & Goldenberg, D. M. (2010). Ranpirnase (frog RNase) targeted with a humanized, internalizing, anti-Trop-2 antibody has potent cytotoxicity against diverse epithelial cancer cells. Molecular Cancer Therapeutics, 9, 2276–2286.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Y. Mayshar for his help in chip analysis. This research was supported by grants from JDRF and ESTOOLS.

Conflict of interest

The authors indicate no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nissim Benvenisty or Joseph Itskovitz-Eldor.

Additional information

Bettina Fishman, Hanna Segev and Oded Kopper have contributed equally.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

GFP positive cells were isolated from SOX17 reporter clones and from PDX1 reporter clones by FACS sorting. Microarray analysis was performed on the GFP+ cells using an Affymetrix GeneChip Human Gene ST1.0 array. A. Comparison between the transcription factors and secreted ligands with the highest variation between the various groups. (I)- Highly expressed in SOX17. (II)- Highly expressed in PDX1. B. Relative expression of published surface markers in undifferentiated hESCs, sorted SOX17 cells, sorted PDX1 cells and pancreas. (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fishman, B., Segev, H., Kopper, O. et al. Targeting Pancreatic Progenitor Cells in Human Embryonic Stem Cell Differentiation for the Identification of Novel Cell Surface Markers. Stem Cell Rev and Rep 8, 792–802 (2012). https://doi.org/10.1007/s12015-012-9363-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9363-x

Keywords

Navigation