Abstract
Mesenchymal stem cells (MSC) from fetal-placental tissues have translational advantages over their adult counterparts, and have variably been reported to express pluripotency markers. OCT- 4 expression in fetal-placental MSC has been documented in some studies, paradoxically without tumourogenicity in vivo. It is possible that OCT- 4 expression is insufficient to induce true “stemness”, but this issue is important for the translational safety of fetal-derived MSC. To clarify this, we undertook a systematic literature review on OCT- 4 in fetal or adnexal MSC to show that most studies report OCT- 4 message or protein expression, but no study provides definitive evidence of true OCT- 4A expression. Discrepant findings were attributable not to different culture conditions, tissue sources, or gestational ages but instead to techniques used. In assessing OCT- 4 as a pluripotency marker, we highlight the challenges in detecting the correct OCT- 4 isoform (OCT- 4A) associated with pluripotency. Although specific detection of OCT- 4A mRNA is achievable, it appears unlikely that any antibody can reliably distinguish between OCT- 4A and the pseudogene OCT- 4B. Finally, using five robust techniques we demonstrate that fetal derived-MSC do not express OCT- 4A (or by default OCT- 4B). Reports suggesting OCT- 4 expression in fetal-derived MSC warrant reassessment, paying attention to gene and protein isoforms, pseudogenes, and antibody choice as well as primer design. Critical examination of the OCT- 4 literature leads us to suggest that OCT- 4 expression in fetal MSC may be a case of “The Emperor’s New Clothes” with early reports of (false) positive expression amplified in subsequent studies without critical attention to emerging refinements in knowledge and methodology.
Similar content being viewed by others
References
Aguilar, S., Nye, E., Chan, J., et al. (2007). Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells, 25(6), 1586–1594.
Alviano, F., Fossati, V., Marchionni, C., et al. (2007). Term Amniotic membrane is a high throughput source for multipotent Mesenchymal Stem Cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol, 7(11).
Atlasi, Y., Mowla, S. J., Ziaee, S. A., Gokhale, P. J., & Andrews, P. W. (2008). OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells, 26(12), 3068–3074.
Avanzini, M. A., Bernardo, M. E., Cometa, A. M., et al. (2009). Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood- and bone marrow-derived progenitors. Haematologica, 94(12), 1649–1660.
Battula, V. L., Bareiss, P. M., Treml, S., et al. (2007). Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation, 75(4), 279–291.
Bieback, K., Kern, S., Kluter, H., & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 22(4), 625–634.
Booth, H. A., & Holland, P. W. (2004). Eleven daughters of NANOG. Genomics, 84(2), 229–238.
Bossolasco, P., Montemurro, T., Cova, L., et al. (2006). Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Research, 16(4), 329–336.
Boyer, L. A., Lee, T. I., Cole, M. F., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–956.
Broxmeyer, H. E. (2010). Umbilical cord transplantation: epilogue. Seminars in Hematology, 47(1), 97–103.
Campagnoli, C., Roberts, I. A., Kumar, S., Bennett, P. R., Bellantuono, I., & Fisk, N. M. (2001). Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98(8), 2396–2402.
Carlin, R., Davis, D., Weiss, M., Schultz, B., Troyer, D. (2006). Expression of early transcription factors OCT- 4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol, 4(8).
Cauffman, G., Liebaers, I., Van Steirteghem, A., & Van de Velde, H. (2006). POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells, 24(12), 2685–2691.
Chan, J., O’Donoghue, K., Gavina, M., et al. (2006). Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells, 24(8), 1879–1891.
Chan, J., Waddington, S. N., O’Donoghue, K., et al. (2007). Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells, 25(4), 875–884.
Chang, Y. J., Hwang, S. M., Tseng, C. P., et al. (2010). Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane. Cells, Tissues, Organs, 192(2), 93–105.
Conconi, M. T., Burra, P., Di Liddo, R., et al. (2006). CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. International Journal of Molecular Medicine, 18(6), 1089–1096.
Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–313.
De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25(1), 100–106.
de Jong, J., & Looijenga, L. H. (2006). Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics: history and future. Critical Reviews in Oncogenesis, 12(3–4), 171–203.
Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.
Erices, A., Conget, P., & Minguell, J. J. (2000). Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 109(1), 235–242.
Ersek, A., Pixley, J. S., Goodrich, A. D., et al. (2010). Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells. Experimental Hematology, 38(4), 311–320.
Fariha, M. M., Chua, K. H., Tan, G. C., Tan, A. E., & Hayati, A. R. (2011). Human chorion-derived stem cells: changes in stem cell properties during serial passage. Cytotherapy, 13(5), 582–593.
Fong, C. Y., Chak, L. L., Biswas, A., et al. (2011). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews, 7(1), 1–16.
Fong, C. Y., Richards, M., Manasi, N., Biswas, A., & Bongso, A. (2007). Comparative growth behaviour and characterization of stem cells from human Wharton’s jelly. Reproductive Biomedicine Online, 15(6), 708–718.
Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T., & Tsuji, K. (2004). Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 22(5), 649–658.
Gonzalez, R., Maki, C. B., Pacchiarotti, J., et al. (2007). Pluripotent marker expression and differentiation of human second trimester Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 362(2), 491–497.
Gotherstrom, C., Ringden, O., Tammik, C., Zetterberg, E., Westgren, M., & Le Blanc, K. (2004). Immunologic properties of human fetal mesenchymal stem cells. American Journal of Obstetrics and Gynecology, 190(1), 239–245.
Greco, S. J., Liu, K., & Rameshwar, P. (2007). Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells, 25(12), 3143–3154.
Guillot, P. V., Abass, O., Bassett, J. H., et al. (2008). Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood, 111(3), 1717–1725.
Guillot, P. V., Gotherstrom, C., Chan, J., Kurata, H., & Fisk, N. M. (2007). Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 25(3), 646–654.
Guillot, P. V., O’Donoghue, K., Kurata, H., & Fisk, N. M. (2006). Fetal stem cells: betwixt and between. Seminars in Reproductive Medicine, 24(5), 340–347.
Hoynowski, S. M., Fry, M. M., Gardner, B. M., et al. (2007). Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochemical and Biophysical Research Communications, 362(2), 347–353.
Hu, Y., Liao, L., Wang, Q., et al. (2003). Isolation and identification of mesenchymal stem cells from human fetal pancreas. The Journal of Laboratory and Clinical Medicine, 141(5), 342–349.
Huang, Y. C., Yang, Z. M., Chen, X. H., et al. (2009). Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Reviews, 5(3), 247–255.
Igura, K., Zhang, X., Takahashi, K., Mitsuru, A., Yamaguchi, S., & Takashi, T. A. (2004). Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy, 6(6), 543–553.
In’t Anker, P. S., Noort, W. A., Scherjon, S. A., et al. (2003). Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica, 88(8), 845–852.
In’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., et al. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102(4), 1548–1549.
Jiang, R., Han, Z., Zhuo, G., et al. (2011). Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med, 5(1), 94–100.
Jo, C. H., Kim, O. S., Park, E. Y., et al. (2008). Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell and Tissue Research, 334(3), 423–433.
Kaltz, N., Funari, A., Hippauf, S., et al. (2008). In vivo osteoprogenitor potency of human stromal cells from different tissues does not correlate with expression of POU5F1 or its pseudogenes. Stem Cells, 26(9), 2419–2424.
Kennea, N. L., Waddington, S. N., Chan, J., et al. (2009). Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle, 8(7), 1069–1079.
Kermani, A. J., Fathi, F., & Mowla, S. J. (2008). Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy. Rejuvenation Research, 11(2), 379–386.
Kim, J., Kang, H. M., Kim, H., et al. (2007). Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning and Stem Cells, 9(4), 581–594.
Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Jeschke, M. G. (2010). Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells and Development, 19(4), 491–502.
Kong, X. Y., Cai, Z., Pan, L., et al. (2008). Transplantation of human amniotic cells exerts neuroprotection in MPTP-induced Parkinson disease mice. Brain Research, 1205, 108–115.
Kotoula, V., Papamichos, S. I., & Lambropoulos, A. F. (2008). Revisiting OCT4 expression in peripheral blood mononuclear cells. Stem Cells, 26(1), 290–291.
Kucia, M., Machalinski, B., & Ratajczak, M. Z. (2006). The developmental deposition of epiblast/germ cell-line derived cells in various organs as a hypothetical explanation of stem cell plasticity? Acta Neurobiol Exp (Wars), 66(4), 331–341.
La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of OCT- 4+/HLA-G + mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131(2), 267–282.
Lai, R. C., Arslan, F., Tan, S. S., et al. (2010). Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. Journal of Molecular and Cellular Cardiology, 48(6), 1215–1224.
Le Blanc, K., Gotherstrom, C., Ringden, O., et al. (2005). Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation, 79(11), 1607–1614.
Lee, J., Kim, H. K., Rho, J. Y., Han, Y. M., & Kim, J. (2006). The human OCT- 4 isoforms differ in their ability to confer self-renewal. Journal of Biological Chemistry, 281(44), 33554–33565.
Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103(5), 1669–1675.
Lian, Q., Lye, E., Suan Yeo, K., et al. (2007). Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells, 25(2), 425–436.
Liedtke, S., Stephan, M., & Kogler, G. (2008). Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biological Chemistry, 389(7), 845–850.
Lu, L. L., Liu, Y. J., Yang, S. G., et al. (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91(8), 1017–1026.
Macias, M. I., Grande, J., Moreno, A., Dominguez, I., Bornstein, R., Flores, A. I. (2010). Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol, 203(5), 495 e499–495 e423.
Marcus, A. J., & Woodbury, D. (2008). Fetal stem cells from extra-embryonic tissues: do not discard. Journal of Cellular and Molecular Medicine, 12(3), 730–742.
Mareschi, K., Rustichelli, D., Comunanza, V., et al. (2009). Multipotent mesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy, 11(5), 534–547.
Miao, Z., Jin, J., Chen, L., et al. (2006). Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biology International, 30(9), 681–687.
Mihu, C. M., Rus Ciuca, D., Soritau, O., Susman, S., & Mihu, D. (2009). Isolation and characterization of mesenchymal stem cells from the amniotic membrane. Romanian Journal of Morphology and Embryology, 50(1), 73–77.
Miki, T., Mitamura, K., Ross, M. A., Stolz, D. B., & Strom, S. C. (2007). Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. Journal of Reproductive Immunology, 75(2), 91–96.
Mirebella, T., Poggi, A., Scaranari, M., et al. (2011). Recruitment of host’s progenitor cells to sites of human amniotic fluid stem cells implantation. Biomaterials, 32(18), 4218–4227.
Montemurro, T., Andriolo, G., Montelatici, E., et al. (2011). Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair. Journal of Cellular and Molecular Medicine, 15(4), 796–808.
Moon, J. H., Lee, J. R., Jee, B. C., et al. (2008). Successful vitrification of human amnion-derived mesenchymal stem cells. Human Reproduction, 23(8), 1760–1770.
Nichols, J., Zevnik, B., Anastassiadis, K., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3), 379–391.
Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24(4), 372–376.
Pacini, S., Carnicelli, V., Trombi, L., et al. (2010). Constitutive expression of pluripotency-associated genes in mesodermal progenitor cells (MPCs). PLoS One, 5(3), e9861.
Pain, D., Chirn, G. W., Strassel, C., & Kemp, D. M. (2005). Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. Journal of Biological Chemistry, 280(8), 6265–6268.
Panagopoulos, I., Moller, E., Collin, A., & Mertens, F. (2008). The POU5F1P1 pseudogene encodes a putative protein similar to POU5F1 isoform 1. Oncology Reports, 20(5), 1029–1033.
Parolini, O., Alviano, F., Bagnara, G. P., et al. (2008). Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells, 26(2), 300–311.
Pesce, M., Gross, M. K., & Scholer, H. R. (1998). In line with our ancestors: OCT- 4 and the mammalian germ. Bioessays, 20(9), 722–732.
Poloni, A., Maurizi, G., Babini, L., et al. Human mesenchymal stem cells from chorionic villi and amniotic fluid are not susceptible to transformation after extensive in vitro expansion. Cell Transplant, 20(5), 643–654.
Poloni, A., Rosini, V., Mondini, E., et al. (2008). Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. Cytotherapy, 10(7), 690–697.
Portmann-Lanz, C. B., Schoeberlein, A., Huber, A., et al. (2006). Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American Journal of Obstetrics and Gynecology, 194(3), 664–673.
Prusa, A. R., Marton, E., Rosner, M., Bernaschek, G., & Hengstschlager, M. (2003). OCT- 4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction, 18(7), 1489–1493.
Qian, H., Zhang, X., Xu, W., et al. (2010). Lentivirus-modified human umbilical cord mesenchymal stem cells maintain their pluripotency. Biotechnology and Applied Biochemistry, 55(1), 53–62.
Ramkisoensing, A. A., Pijnappels, D. A., Askar, S. F., et al. (2011). Human Embryonic and Fetal Mesenchymal Stem Cells Differentiate toward Three Different Cardiac Lineages in Contrast to Their Adult Counterparts. PLoS One, 6(9), e24164.
Ratajczak, M. Z., Machalinski, B., Wojakowski, W., Ratajczak, J., & Kucia, M. (2007). A hypothesis for an embryonic origin of pluripotent OCT- 4(+) stem cells in adult bone marrow and other tissues. Leukemia, 21(5), 860–867.
Riekstina, U., Cakstina, I., Parfejevs, V., et al. (2009). Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Reviews, 5(4), 378–386.
Roelen, D. L., van der Mast, B. J., In’t Anker, P. S., et al. (2009). Differential immunomodulatory effects of fetal versus maternal multipotent stromal cells. Human Immunology, 70(1), 16–23.
Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21(1), 105–110.
Roubelakis, M. G., Pappa, K. I., Bitsika, V., et al. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells and Development, 16(6), 931–952.
Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 23(2), 220–229.
Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscular Disorders, 18(1), 17–18.
Semenov, O. V., Koestenbauer, S., Riegel, M., et al. (2010). Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. Am J Obstet Gynecol, 202(2), 193 e191–193 e113.
Soncini, M., Vertua, E., Gibelli, L., et al. (2007). Isolation and characterization of mesenchymal cells from human fetal membranes. Journal of Tissue Engineering and Regenerative Medicine, 1(4), 296–305.
Sung, H. J., Hong, S. C., Yoo, J. H., et al. (2010). Stemness evaluation of mesenchymal stem cells from placentas according to developmental stage: comparison to those from adult bone marrow. Journal of Korean Medical Science, 25(10), 1418–1426.
Suo, G., Han, J., Wang, X., Zhang, J., Zhao, Y., & Dai, J. (2005). Oct4 pseudogenes are transcribed in cancers. Biochemical and Biophysical Research Communications, 337(4), 1047–1051.
Takeda, J., Seino, S., & Bell, G. I. (1992). Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Research, 20(17), 4613–4620.
Tang, C., Lee, A. S., Volkmer, J. P., et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol.
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.
Tong, C. K., Vellasamy, S., Tan, B. C., et al. (2011). Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biology International, 35(3), 221–226.
Troyer, D. L., & Weiss, M. L. (2008). Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26(3), 591–599.
Trubiani, O., Zalzal, S. F., Paganelli, R., et al. (2010). Expression profile of the embryonic markers nanog, OCT- 4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. Journal of Cellular Physiology, 225(1), 123–131.
Tsai, M. S., Lee, J. L., Chang, Y. J., & Hwang, S. M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction, 19(6), 1450–1456.
Vanleene, M., Saldanha, Z., Cloyd, K. L., et al. (2011). Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood, 117(3), 1053–1060.
Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337.
Weiss, M. L., Medicetty, S., Bledsoe, A. R., et al. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24(3), 781–792.
Wolbank, S., Peterbauer, A., Fahrner, M., et al. (2007). Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Engineering, 13(6), 1173–1183.
Yen, B. L., Huang, H. I., Chien, C. C., et al. (2005). Isolation of multipotent cells from human term placenta. Stem Cells, 23(1), 3–9.
You, Q., Tong, X., Guan, Y., et al. (2009). The biological characteristics of human third trimester amniotic fluid stem cells. The Journal of International Medical Research, 37(1), 105–112.
Zaibak, F., Bello, P., Kozlovski, J., et al. (2009). Unrestricted somatic stem cells from human umbilical cord blood grow in serum-free medium as spheres. BMC Biotechnol, 9(101).
Zangrossi, S., Marabese, M., Broggini, M., et al. (2007). OCT- 4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells, 25(7), 1675–1680.
Zhang, P., Baxter, J., Vinod, K., Tulenko, T. N., & Di Muzio, P. J. (2009). Endothelial differentiation of amniotic fluid-derived stem cells: synergism of biochemical and shear force stimuli. Stem Cells and Development, 18(9), 1299–1308.
Zhang, X., Hirai, M., Cantero, S., et al. (2011). Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 112(4), 1206–1218.
Zhang, Y., Li, C. D., Jiang, X. X., Li, H. L., Tang, P. H., & Mao, N. (2004). Comparison of mesenchymal stem cells from human placenta and bone marrow. Chinese Medical Journal, 117(6), 882–887.
Zhang, Z. Y., Teoh, S. H., Chong, M. S., et al. (2010). Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials, 31(4), 608–620.
Zhang, Z. Y., Teoh, S. H., Chong, M. S., et al. (2009). Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells, 27(1), 126–137.
Zhao, P., Ise, H., Hongo, M., Ota, M., Konishi, I., & Nikaido, T. (2005). Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation, 79(5), 528–535.
Zhao, Y., Wang, H., & Mazzone, T. (2006). Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Experimental Cell Research, 312(13), 2454–2464.
Acknowledgement
Work on fetal stem cells in our groups is funded (i) in Australia by the National Health & Medical Research Council, the Australian Research Council, and the Australian Stem Cell Centre (ii) in the UK by the Genesis Research Trust and Research Councils UK and (iii) in Singapore by the Bio-Medical Research Council and National Medical Research Council.
Competing interests
The authors declare no potential conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ryan, J.M., Pettit, A.R., Guillot, P.V. et al. Unravelling the Pluripotency Paradox in Fetal and Placental Mesenchymal Stem Cells: Oct-4 Expression and the Case of the Emperor’s New Clothes. Stem Cell Rev and Rep 9, 408–421 (2013). https://doi.org/10.1007/s12015-011-9336-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12015-011-9336-5