Stem Cell Reviews and Reports

, Volume 8, Issue 3, pp 863–881 | Cite as

Time-Dependent Processes in Stem Cell-Based Tissue Engineering of Articular Cartilage

  • Ivana Gadjanski
  • Kara Spiller
  • Gordana Vunjak-Novakovic
Article

Abstract

Articular cartilage (AC), situated in diarthrodial joints at the end of the long bones, is composed of a single cell type (chondrocytes) embedded in dense extracellular matrix comprised of collagens and proteoglycans. AC is avascular and alymphatic and is not innervated. At first glance, such a seemingly simple tissue appears to be an easy target for the rapidly developing field of tissue engineering. However, cartilage engineering has proven to be very challenging. We focus on time-dependent processes associated with the development of native cartilage starting from stem cells, and the modalities for utilizing these processes for tissue engineering of articular cartilage.

Keywords

Cartilage tissue engineering Mesenchymal stem cells Embryonic stem cells Induced pluripotent stem cells 

References

  1. 1.
    Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England Journal of Medicine, 331, 889–895.PubMedCrossRefGoogle Scholar
  2. 2.
    Tuan, R. S. (2007). A second-generation autologous chondrocyte implantation approach to the treatment of focal articular cartilage defects. Arthritis Research & Therapy, 9, 109.CrossRefGoogle Scholar
  3. 3.
    Malicev, E., Barlič, A., Kregar-Velikonja, N., Stražar, K., & Drobnič, M. (2011). Cartilage from the edge of a debrided articular defect is inferior to that from a standard donor site when used for autologous chondrocyte cultivation. The Journal of Bone and Joint Surgery. British Volume, 93, 421–426.PubMedCrossRefGoogle Scholar
  4. 4.
    Ossendorf, C., Steinwachs, M. R., Kreuz, P. C., Osterhoff, G., Lahm, A., Ducommun, P. P., et al. (2011). Autologous chondrocyte implantation (ACI) for the treatment of large and complex cartilage lesions of the knee. Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology: SMARTT, 3, 11.CrossRefGoogle Scholar
  5. 5.
    Goessler, U. R., Bugert, P., Bieback, K., Baisch, A., Sadick, H., Verse, T., et al. (2004). Expression of collagen and fiber-associated proteins in human septal cartilage during in vitro dedifferentiation. International Journal of Molecular Medicine, 14, 1015–1022.PubMedGoogle Scholar
  6. 6.
    Hayes, A. J., Hall, A., Brown, L., Tubo, R., & Caterson, B. (2007). Macromolecular organization and in vitro growth characteristics of scaffold-free neocartilage grafts. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 55, 853–866.CrossRefGoogle Scholar
  7. 7.
    Xu, J., Wang, W., Ludeman, M., Cheng, K., Hayami, T., Lotz, J. C., et al. (2008). Chondrogenic differentiation of human mesenchymal stem cells in three-dimensional alginate gels. Tissue Engineering Part A, 14, 667–680.PubMedCrossRefGoogle Scholar
  8. 8.
    Hwang, N. S., Im, S. G., Wu, P. B., Bichara, D. A., Zhao, X., Randolph, M. A., et al. (2011). Chondrogenic priming adipose-mesenchymal stem cells for cartilage tissue regeneration. Pharmaceutical Research, 28, 1395–1405.PubMedCrossRefGoogle Scholar
  9. 9.
    Yang, H. N., Park, J. S., Woo, D. G., Jeon, S. Y., Do, H. J., Lim, H. Y., et al. (2011). Chondrogenesis of mesenchymal stem cells and dedifferentiated chondrocytes by transfection with SOX Trio genes. Biomaterials, 32, 7695–7704.PubMedCrossRefGoogle Scholar
  10. 10.
    Yao. Y., Zhang, F., Pang, P. X., Su, K., Zhou, R., Wang, Y., et al. (2011). In vitro study of chondrocyte redifferentiation with lentiviral vector-mediated transgenic TGF-β3 and shRNA suppressing type I collagen in three-dimensional culture. Journal of Tissue Engineering and Regenerative Medicine.Google Scholar
  11. 11.
    Hillel, A. T., Taube, J. M., Cornish, T. C., Sharma, B., Halushka, M., McCarthy, E. F., et al. (2010). Characterization of human mesenchymal stem cell-engineered cartilage: analysis of its ultrastructure, cell density and chondrocyte phenotype compared to native adult and fetal cartilage. Cells, Tissues, Organs, 191, 12–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Erickson, I. E., Huang, A. H., Chung, C., Li, R. T., Burdick, J. A., & Mauck, R. L. (2009). Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Engineering Part A, 15, 1041–1052.PubMedCrossRefGoogle Scholar
  13. 13.
    Lenas, P., Moos, M., & Luyten, F. P. (2009). Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part I: from three-dimensional cell growth to biomimetics of in vivo development. Tissue Engineering Part B, Reviews, 15, 381–394.PubMedCrossRefGoogle Scholar
  14. 14.
    Ingber, D. E., Mow, V. C., Butler, D., Niklason, L., Huard, J., Mao, J., et al. (2006). Tissue engineering and developmental biology: going biomimetic. Tissue Engineering, 12, 3265–3283.PubMedCrossRefGoogle Scholar
  15. 15.
    Lenas, P., Moos, M., & Luyten, F. P. (2009). Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. Tissue Engineering. Part B, Reviews, 15, 395–422.PubMedCrossRefGoogle Scholar
  16. 16.
    Byers, P. D., & Brown, R. A. (2006). Cell columns in articular cartilage physes questioned: a review. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society., 14, 3–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K. S., & Mirams, M. (2008). Endochondral ossification: how cartilage is converted into bone in the developing skeleton. The International Journal of Biochemistry & Cell Biology, 40, 46–62.CrossRefGoogle Scholar
  18. 18.
    Olsen, B. R., Reginato, A. M., & Wang, W. (2000). Bone development. Annual Review of Cell and Developmental Biology, 16, 191–220.PubMedCrossRefGoogle Scholar
  19. 19.
    Goldring, M. B., Tsuchimochi, K., & Ijiri, K. (2006). The control of chondrogenesis. Journal of Cellular Biochemistry, 97, 33–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Tuan, R. S. (2004). Biology of developmental and regenerative skeletogenesis. Clinical Orthopaedics and Related Research. S105–17.Google Scholar
  21. 21.
    Lefebvre, V., & Bhattaram, P. (2010). Vertebrate skeletogenesis. Current Topics in Developmental Biology, 90, 291–317.PubMedCrossRefGoogle Scholar
  22. 22.
    Knudson, C. B. & Knudson, W. (2004). Hyaluronan and CD44: modulators of chondrocyte metabolism. Clinical Orthopaedics and Related Research S152–62.Google Scholar
  23. 23.
    Hall, B. K., & Miyake, T. (1995). Divide, accumulate, differentiate: cell condensation in skeletal development revisited. The International Journal of Developmental Biology, 39, 881–893.PubMedGoogle Scholar
  24. 24.
    Kamiya, N., Watanabe, H., Habuchi, H., Takagi, H., Shinomura, T., Shimizu, K., et al. (2006). Versican/PG-M regulates chondrogenesis as an extracellular matrix molecule crucial for mesenchymal condensation. The Journal of Biological Chemistry, 281, 2390–2400.PubMedCrossRefGoogle Scholar
  25. 25.
    French, M. M., Smith, S. E., Akanbi, K., Sanford, T., Hecht, J., Farach-Carson, M. C., et al. (1999). Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. The Journal of Cell Biology, 145, 1103–1115.PubMedCrossRefGoogle Scholar
  26. 26.
    Knox, S. M., & Whitelock, J. M. (2006). Perlecan: how does one molecule do so many things? Cellular and Molecular Life Sciences: CMLS., 63, 2435–2445.PubMedCrossRefGoogle Scholar
  27. 27.
    Colvin, J. S., Feldman, B., Nadeau, J. H., Goldfarb, M., & Ornitz, D. M. (1999). Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Developmental Dynamics: An Official Publication of the American Association of Anatomists., 216, 72–88.CrossRefGoogle Scholar
  28. 28.
    Niswander, L. (2002). Interplay between the molecular signals that control vertebrate limb development. The International Journal of Developmental Biology, 46, 877–881.PubMedGoogle Scholar
  29. 29.
    Soulintzi, N., & Zagris, N. (2007). Spatial and temporal expression of perlecan in the early chick embryo. Cells, Tissues, Organs, 186, 243–256.PubMedCrossRefGoogle Scholar
  30. 30.
    Perrier, E., Ronzière, M. -C., Bareille, R., Pinzano, A., Mallein-Gerin, F., & Freyria, A. -M. (2011). Analysis of collagen expression during chondrogenic induction of human bone marrow mesenchymal stem cells. Biotechnology Letters.Google Scholar
  31. 31.
    Christley, S., Alber, M. S., & Newman, S. A. (2007). Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Computational Biology, 3, e76.PubMedCrossRefGoogle Scholar
  32. 32.
    Shum, L., & Nuckolls, G. (2002). The life cycle of chondrocytes in the developing skeleton. Arthritis Research, 4, 94–106.PubMedCrossRefGoogle Scholar
  33. 33.
    Tuli, R., Tuli, S., Nandi, S., Huang, X., Manner, P. A., Hozack, W. J., et al. (2003). Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. The Journal of Biological Chemistry, 278, 41227–41236.PubMedCrossRefGoogle Scholar
  34. 34.
    Chimal-Monroy, J. (1999). Díaz de León L. Expression of N-cadherin, N-CAM, fibronectin and tenascin is stimulated by TGF-beta1, beta2, beta3 and beta5 during the formation of precartilage condensations. The International Journal of Developmental Biology, 43, 59–67.PubMedGoogle Scholar
  35. 35.
    Burdan, F., Szumiło, J., Korobowicz, A., Farooquee, R., Patel, S., Patel, A., et al. (2009). Morphology and physiology of the epiphyseal growth plate. Folia Histochemica Et Cytobiologica/Polish Academy of Sciences, Polish Histochemical and Cytochemical Society., 47, 5–16.PubMedGoogle Scholar
  36. 36.
    Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., & de Crombrugghe, B. (1999). Sox9 is required for cartilage formation. Nature Genetics, 22, 85–89.PubMedCrossRefGoogle Scholar
  37. 37.
    Akiyama, H. & Lefebvre, V. (2011). Unraveling the transcriptional regulatory machinery in chondrogenesis. Journal of Bone and Mineral Metabolism.Google Scholar
  38. 38.
    Ornitz, D. M. (2005). FGF signaling in the developing endochondral skeleton. Cytokine & Growth Factor Reviews, 16, 205–213.CrossRefGoogle Scholar
  39. 39.
    Liu, Z., Lavine, K. J., Hung, I. H., & Ornitz, D. M. (2007). FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. Developmental Biology, 302, 80–91.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen, W.-H., Lai, M.-T., Wu, A. T. H., Wu, C.-C., Gelovani, J. G., Lin, C.-T., et al. (2009). In vitro stage-specific chondrogenesis of mesenchymal stem cells committed to chondrocytes. Arthritis and Rheumatism, 60, 450–459.PubMedCrossRefGoogle Scholar
  41. 41.
    Akiyama, H. (2008). Control of chondrogenesis by the transcription factor Sox9. Modern Rheumatology/the Japan Rheumatism Association., 18, 213–219.PubMedGoogle Scholar
  42. 42.
    Akiyama, H., Chaboissier, M.-C., Martin, J. F., Schedl, A., & de Crombrugghe, B. (2002). The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes & Development, 16, 2813–2828.CrossRefGoogle Scholar
  43. 43.
    Chimal-Monroy, J., Rodriguez-Leon, J., Montero, J. A., Gañan, Y., Macias, D., Merino, R., et al. (2003). Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: sox genes and BMP signaling. Developmental Biology, 257, 292–301.PubMedCrossRefGoogle Scholar
  44. 44.
    Hill, T. P., Später, D., Taketo, M. M., Birchmeier, W., & Hartmann, C. (2005). Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Developmental Cell, 8, 727–738.PubMedCrossRefGoogle Scholar
  45. 45.
    Barna, M., Pandolfi, P. P., & Niswander, L. (2005). Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development. Nature, 436, 277–281.PubMedCrossRefGoogle Scholar
  46. 46.
    DeLise, A. M., Fischer, L., & Tuan, R. S. (2000). Cellular interactions and signaling in cartilage development. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society., 8, 309–334.PubMedCrossRefGoogle Scholar
  47. 47.
    Tickle, C. (2003). Patterning systems–from one end of the limb to the other. Developmental Cell, 4, 449–458.PubMedCrossRefGoogle Scholar
  48. 48.
    Niswander, L. (2003). Pattern formation: old models out on a limb. Nature Reviews Genetics, 4, 133–143.PubMedCrossRefGoogle Scholar
  49. 49.
    Maruyama, T., Mirando, A. J., Deng, C.-X., & Hsu, W. (2010). The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Science Signaling, 3, ra40-ra.CrossRefGoogle Scholar
  50. 50.
    Tickle, C., & Münsterberg, A. (2001). Vertebrate limb development–the early stages in chick and mouse. Current Opinion in Genetics & Development, 11, 476–481.CrossRefGoogle Scholar
  51. 51.
    Itoh, N., & Ornitz, D. M. (2004). Evolution of the Fgf and Fgfr gene families. Trends in Genetics: TIG., 20, 563–569.PubMedCrossRefGoogle Scholar
  52. 52.
    Hellingman, C. A., Koevoet, W., Kops, N., Farrell, E., Jahr, H., Liu, W., et al. (2010). Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Engineering. Part A, 16, 545–556.PubMedCrossRefGoogle Scholar
  53. 53.
    Tickle, C. (2002). Molecular basis of vertebrate limb patterning. American Journal of Medical Genetics, 112, 250–255.PubMedCrossRefGoogle Scholar
  54. 54.
    Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M., & Vortkamp, A. (2002). Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Developmental Cell, 3, 439–449.PubMedCrossRefGoogle Scholar
  55. 55.
    Yoon, B. S., Ovchinnikov, D. A., Yoshii, I., Mishina, Y., Behringer, R. R., & Lyons, K. M. (2005). Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 5062–5067.PubMedCrossRefGoogle Scholar
  56. 56.
    Mackie, E. J., Tatarczuch, L., & Mirams, M. (2011). The growth plate chondrocyte and endochondral ossification. The Journal of Endocrinology.Google Scholar
  57. 57.
    Pass, C., MacRae, V. E., Ahmed, S. F., & Farquharson, C. (2009). Inflammatory cytokines and the GH/IGF-I axis: novel actions on bone growth. Cell Biochemistry and Function, 27, 119–127.PubMedCrossRefGoogle Scholar
  58. 58.
    Loeser, R. F., Pacione, C. A., & Chubinskaya, S. (2003). The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis and Rheumatism, 48, 2188–2196.PubMedCrossRefGoogle Scholar
  59. 59.
    Nilsson, O., Marino, R., De Luca, F., Phillip, M., & Baron, J. (2005). Endocrine regulation of the growth plate. Hormone Research, 64, 157–165.PubMedCrossRefGoogle Scholar
  60. 60.
    Gaissmaier, C., Koh, J. L., & Weise, K. (2008). Growth and differentiation factors for cartilage healing and repair. Injury, 39(Suppl 1), S88–S96.PubMedCrossRefGoogle Scholar
  61. 61.
    Quintana, L., zur Nieden, N. I., & Semino, C. E. (2009). Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Engineering Part B, Reviews, 15, 29–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Kronenberg, H. M. (2003). Developmental regulation of the growth plate. Nature, 423, 332–336.PubMedCrossRefGoogle Scholar
  63. 63.
    Drissi, H., Zuscik, M., Rosier, R., & O’Keefe, R. (2005). Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Molecular Aspects of Medicine, 26, 169–179.PubMedCrossRefGoogle Scholar
  64. 64.
    Kim, H. J., Delaney, J. D., & Kirsch, T. (2010). The role of pyrophosphate/phosphate homeostasis in terminal differentiation and apoptosis of growth plate chondrocytes. Bone, 47, 657–665.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhao, Q., Eberspaecher, H., Lefebvre, V., & De Crombrugghe, B. (1997). Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Developmental Dynamics: An Official Publication of the American Association of Anatomists., 209, 377–386.CrossRefGoogle Scholar
  66. 66.
    Carlevaro, M. F., Cermelli, S., Cancedda, R., & Descalzi Cancedda, F. (2000). Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. Journal of Cell Science, 113(Pt 1), 59–69.PubMedGoogle Scholar
  67. 67.
    Hirai, T., Chagin, A. S., Kobayashi, T., Mackem, S., & Kronenberg, H. M. (2011). Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life. Proceedings of the National Academy of Sciences of the United States of America, 108, 191–196.PubMedCrossRefGoogle Scholar
  68. 68.
    Mariani, F. V., & Martin, G. R. (2003). Deciphering skeletal patterning: clues from the limb. Nature, 423, 319–325.PubMedCrossRefGoogle Scholar
  69. 69.
    Chau, M., Forcinito, P., Andrade,, A. C., Hegde, A., Ahn, S., Lui, J. C., et al. (2011). Organization of the Indian hedgehog - parathyroid hormone-related protein system in the postnatal growth plate. Journal of Molecular Endocrinology.Google Scholar
  70. 70.
    Pacifici, M., Koyama, E., & Iwamoto, M. (2005). Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Research Part C, Embryo Today: Reviews, 75, 237–248.CrossRefGoogle Scholar
  71. 71.
    Pitsillides, A. A., & Ashhurst, D. E. (2008). A critical evaluation of specific aspects of joint development. Developmental Dynamics: An Official Publication of the American Association of Anatomists., 237, 2284–2294.CrossRefGoogle Scholar
  72. 72.
    Hartmann, C., & Tabin, C. J. (2001). Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell, 104, 341–351.PubMedCrossRefGoogle Scholar
  73. 73.
    Spagnoli, A., O’Rear, L., Chandler, R. L., Granero-Molto, F., Mortlock, D. P., Gorska, A. E., et al. (2007). TGF-beta signaling is essential for joint morphogenesis. The Journal of Cell Biology, 177, 1105–1117.PubMedCrossRefGoogle Scholar
  74. 74.
    Guo, X., Day, T. F., Jiang, X., Garrett-Beal, L., Topol, L., & Yang, Y. (2004). Wnt/beta-catenin signaling is sufficient and necessary for synovial joint formation. Genes & Development, 18, 2404–2417.CrossRefGoogle Scholar
  75. 75.
    Seo, H.-S., & Serra, R. (2009). Tgfbr2 is required for development of the skull vault. Developmental Biology, 334, 481–490.PubMedCrossRefGoogle Scholar
  76. 76.
    Nagy, A., Kénesi, E., Rentsendorj, O., Molnár, A., Szénási, T., Sinkó, I., et al. (2011). Evolutionarily conserved, growth plate zone-specific regulation of the matrilin-1 promoter: L-Sox5/Sox6 and Nfi factors bound near TATA finely tune activation by Sox9. Molecular and Cellular Biology, 31, 686–699.PubMedCrossRefGoogle Scholar
  77. 77.
    Khan, I. M., Redman, S. N., Williams, R., Dowthwaite, G. P., Oldfield, S. F., & Archer, C. W. (2007). The development of synovial joints. Current Topics in Developmental Biology, 79, 1–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Andrade, A. C., Lui, J. C., & Nilsson, O. (2010). Temporal and spatial expression of a growth-regulated network of imprinted genes in growth plate. Pediatric Nephrology (Berlin, Germany), 25, 617–623.CrossRefGoogle Scholar
  79. 79.
    Ulrich-Vinther, M., Maloney, M. D., Schwarz, E. M., Rosier, R., & O’Keefe, R. J. (2003). Articular cartilage biology. The Journal of the American Academy of Orthopaedic Surgeons, 11, 421–430.PubMedGoogle Scholar
  80. 80.
    Mikos, A. G., Herring, S. W., Ochareon, P., Elisseeff, J., Lu, H. H., Kandel, R., et al. (2006). Engineering complex tissues. Tissue Engineering, 12, 3307–3339.PubMedCrossRefGoogle Scholar
  81. 81.
    Hollander, A. P., Dickinson, S. C., & Kafienah, W. (2010). Stem cells and cartilage development: complexities of a simple tissue. Stem Cells (Dayton, Ohio), 28, 1992–1996.CrossRefGoogle Scholar
  82. 82.
    Zhang, Z., McCaffery, J. M., Spencer, R. G. S., & Francomano, C. A. (2004). Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants. Journal of Anatomy, 205, 229–237.PubMedCrossRefGoogle Scholar
  83. 83.
    Mauck, R. L., Yuan, X., & Tuan, R. S. (2006). Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society., 14, 179–189.PubMedCrossRefGoogle Scholar
  84. 84.
    Park, S. S., Jin, H. R., Chi, D. H., & Taylor, R. S. (2004). Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials, 25, 2363–2369.PubMedCrossRefGoogle Scholar
  85. 85.
    Kopesky, P. W., Lee, H. Y., Vanderploeg, E. J., Kisiday, J. D., Frisbie, D. D., Plaas, A. H., et al. (2010). Adult equine bone marrow stromal cells produce a cartilage-like ECM mechanically superior to animal-matched adult chondrocytes. Matrix Biology, 29, 427–438.PubMedCrossRefGoogle Scholar
  86. 86.
    Spiller, K. L., Maher, S. A., & Lowman, A. M. (2011). Hydrogels for the repair of articular cartilage defects. Tissue Engineering Part B, Reviews. doi:10.1089/ten.TEB.2011.0077.
  87. 87.
    Huang, A. H., Stein, A., & Mauck, R. L. (2010). Evaluation of the complex transcriptional topography of mesenchymal stem cell chondrogenesis for cartilage tissue engineering. Tissue Engineering Part A, 16, 2699–2708.PubMedCrossRefGoogle Scholar
  88. 88.
    Athanasiou, K. A., Rosenwasser, M. P., Buckwalter, J. A., Malinin, T. I., & Mow, V. C. (1991). Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. Journal of Orthopaedic Research, 9, 330–340.PubMedCrossRefGoogle Scholar
  89. 89.
    Kawaguchi, J., Mee, P. J., & Smith, A. G. (2005). Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone, 36, 758–769.PubMedCrossRefGoogle Scholar
  90. 90.
    Koay, E. J., Hoben, G. M. B., & Athanasiou, K. A. (2007). Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells (Dayton, Ohio), 25, 2183–2190.CrossRefGoogle Scholar
  91. 91.
    Hwang, N. S., Varghese, S., & Elisseeff, J. (2008). Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PloS One, 3, e2498.PubMedCrossRefGoogle Scholar
  92. 92.
    Boyd, N. L., Robbins, K. R., Dhara, S. K., West, F. D., & Stice, S. L. (2009). Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Engineering Part A, 15, 1897–1907.PubMedCrossRefGoogle Scholar
  93. 93.
    Jukes, J. M., van Blitterswijk, C. A., & de Boer, J. (2010). Skeletal tissue engineering using embryonic stem cells. Journal of Tissue Engineering and Regenerative Medicine, 4, 165–180.PubMedCrossRefGoogle Scholar
  94. 94.
    Yamashita, A., Nishikawa, S., & Rancourt, D. E. (2010). Identification of five developmental processes during chondrogenic differentiation of embryonic stem cells. PloS One, 5, e10998.PubMedCrossRefGoogle Scholar
  95. 95.
    Shamblott, M. J., Axelman, J., Littlefield, J. W., Blumenthal, P. D., Huggins, G. R., Cui, Y., et al. (2001). Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proceedings of the National Academy of Sciences of the United States of America, 98, 113–118.PubMedGoogle Scholar
  96. 96.
    Lee, E. J., Lee, H.-N., Kang, H.-J., Kim, K.-H., Hur, J., Cho, H.-J., et al. (2010). Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells. Tissue Engineering Part A, 16, 705–715.PubMedCrossRefGoogle Scholar
  97. 97.
    Kim, M. S., Hwang, N. S., Lee, J., Kim, T.-K., Leong, K., Shamblott, M. J., et al. (2005). Musculoskeletal differentiation of cells derived from human embryonic germ cells. Stem Cells (Dayton, Ohio), 23, 113–123.CrossRefGoogle Scholar
  98. 98.
    Varghese, S., Hwang, N. S., Ferran, A., Hillel, A., Theprungsirikul, P., Canver, A. C., et al. (2010). Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells (Dayton, Ohio), 28, 765–774.CrossRefGoogle Scholar
  99. 99.
    Barberi, T., Willis, L. M., Socci, N. D., & Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Medicine, 2, e161.PubMedCrossRefGoogle Scholar
  100. 100.
    Stavropoulos, M. E., Mengarelli, I., & Barberi, T. (2009). Differentiation of multipotent mesenchymal precursors and skeletal myoblasts from human embryonic stem cells. Current Protocols in Stem Cell Biology. Chapter 1:Unit 1 F.8-Unit 1 F.8.Google Scholar
  101. 101.
    Lian, Q., Lye, E., Suan Yeo, K., Khia Way Tan, E., Salto-Tellez, M., Liu, T. M., et al. (2007). Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells (Dayton, Ohio), 25, 425–436.CrossRefGoogle Scholar
  102. 102.
    Wu, R., Gu, B., Zhao, X., Tan, Z., Chen, L., Zhu, J., et al. (2011). Derivation of multipotent nestin(+)/CD271 (−)/STRO-1 (−) mesenchymal-like precursors from human embryonic stem cells in chemically defined conditions. Human Cell: Official Journal of Human Cell Research Society.Google Scholar
  103. 103.
    Karlsson, C., Emanuelsson, K., Wessberg, F., Kajic, K., Axell, M. Z., Eriksson, P. S., et al. (2009). Human embryonic stem cell-derived mesenchymal progenitors-Potential in regenerative medicine. Stem Cell Research.Google Scholar
  104. 104.
    Yamashita, A., Krawetz, R., & Rancourt, D. E. (2009). Loss of discordant cells during micro-mass differentiation of embryonic stem cells into the chondrocyte lineage. Cell Death and Differentiation, 16, 278–286.PubMedCrossRefGoogle Scholar
  105. 105.
    Toh, W. S., Lee, E. H., & Cao, T. (2010). Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Reviews.Google Scholar
  106. 106.
    Nakagawa, T., Lee, S. Y., & Reddi, A. H. (2009). Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor beta1. Arthritis and Rheumatism, 60, 3686–3692.PubMedCrossRefGoogle Scholar
  107. 107.
    Kramer, J., Hegert, C., Guan, K., Wobus, A. M., Müller, P. K., & Rohwedel, J. (2000). Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mechanisms of Development, 92, 193–205.PubMedCrossRefGoogle Scholar
  108. 108.
    Bigdeli, N., Karlsson, C., Strehl, R., Concaro, S., Hyllner, J., & Lindahl, A. (2009). Coculture of human embryonic stem cells and human articular chondrocytes results in significantly altered phenotype and improved chondrogenic differentiation. Stem Cells (Dayton, Ohio), 27, 1812–1821.CrossRefGoogle Scholar
  109. 109.
    Hoben, G. M., Willard, V. P., & Athanasiou, K. A. (2009). Fibrochondrogenesis of hESCs: growth factor combinations and cocultures. Stem Cells and Development, 18, 283–292.PubMedCrossRefGoogle Scholar
  110. 110.
    Vats, A., Bielby, R. C., Tolley, N., Dickinson, S. C., Boccaccini, A. R., Hollander, A. P., et al. (2006). Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Engineering, 12, 1687–1697.PubMedCrossRefGoogle Scholar
  111. 111.
    Sui, Y., Clarke, T., & Khillan, J. S. (2003). Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage. Differentiation; Research in Biological Diversity., 71, 578–585.PubMedCrossRefGoogle Scholar
  112. 112.
    Toh, W. S., Lee, E. H., Richards, M., & Cao, T. (2010). In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods in Molecular Biology (Clifton, NJ), 584, 317–331.CrossRefGoogle Scholar
  113. 113.
    Toh, W. S., Yang, Z., Heng, B. C., & Cao, T. (2007). Differentiation of human embryonic stem cells toward the chondrogenic lineage. Methods in Molecular Biology (Clifton, NJ), 407, 333–349.CrossRefGoogle Scholar
  114. 114.
    Tanaka, H., Murphy, C. L., Murphy, C., Kimura, M., Kawai, S., & Polak, J. M. (2004). Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone. Journal of Cellular Biochemistry, 93, 454–462.PubMedCrossRefGoogle Scholar
  115. 115.
    Toh, W. S., Lee, E. H., Richards, M., & Cao, T. (2010). In vitro derivation of chondrogenic cells from human embryonic stem cells. Methods in Molecular Biology, 584, 317–331.PubMedCrossRefGoogle Scholar
  116. 116.
    Gong, G., Ferrari, D., Dealy, C. N., & Kosher, R. A. (2010). Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. Journal of Cellular Physiology, 224, 664–671.PubMedCrossRefGoogle Scholar
  117. 117.
    Oldershaw, R. A., Baxter, M. A., Lowe, E. T., Bates, N., Grady, L. M., Soncin, F., et al. (2010). Directed differentiation of human embryonic stem cells toward chondrocytes. Nature Biotechnology, 28, 1187–1194.PubMedCrossRefGoogle Scholar
  118. 118.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRefGoogle Scholar
  119. 119.
    Medvedev, S. P., Grigor’eva, E. V., Shevchenko, A. I., Malakhova, A. A., Dementyeva, E. V., Shilov, A. A., et al. (2011). Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells and Development, 20, 1099–1112.PubMedCrossRefGoogle Scholar
  120. 120.
    Teramura, T., Onodera, Y., Mihara, T., Hosoi, Y., Hamanishi, C., & Fukuda, K. (2010). Induction of mesenchymal progenitor cells with chondrogenic property from mouse-induced pluripotent stem cells. Cellular Reprogramming, 12, 249–261.PubMedCrossRefGoogle Scholar
  121. 121.
    Solchaga, L. A., Penick, K. J., & Welter, J. F. (2011). Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods in Molecular Biology (Clifton, NJ), 698, 253–278.CrossRefGoogle Scholar
  122. 122.
    Ronzière, M. C., Perrier, E., Mallein-Gerin, F., & Freyria, A.-M. (2010). Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Bio-Medical Materials and Engineering, 20, 145–158.PubMedGoogle Scholar
  123. 123.
    Ogawa, R., & Mizuno, S. (2010). Cartilage regeneration using adipose-derived stem cells. Current Stem Cell Research & Therapy, 5, 129–132.CrossRefGoogle Scholar
  124. 124.
    Hildner, F., Albrecht, C., Gabriel, C., Redl, H., & van Griensven, M. (2011). State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. Journal of Tissue Engineering and Regenerative Medicine, 5, e36–e51.PubMedCrossRefGoogle Scholar
  125. 125.
    Arufe, M. C., De la Fuente, A., Fuentes, I., de Toro, F. J., & Blanco, F. J. (2010). Chondrogenic potential of subpopulations of cells expressing mesenchymal stem cell markers derived from human synovial membranes. Journal of Cellular Biochemistry, 111, 834–845.PubMedCrossRefGoogle Scholar
  126. 126.
    Tuli, R., Tuli, S., Nandi, S., Wang, M. L., Alexander, P. G., Haleem-Smith, H., et al. (2003). Characterization of multipotential mesenchymal progenitor cells derived from human trabecular bone. Stem Cells (Dayton, Ohio), 21, 681–693.CrossRefGoogle Scholar
  127. 127.
    Zhang, X., Hirai, M., Cantero, S., Ciubotariu, R., Dobrila, L., Hirsh, A., et al. (2011). Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 112, 1206–1218.PubMedCrossRefGoogle Scholar
  128. 128.
    Cucchiarini, M., Ekici, M., Schetting, S., Kohn, D., & Madry, H. (2011). Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Tissue Engineering Part A.Google Scholar
  129. 129.
    Bradley, E. W., & Drissi, M. H. (2011). Wnt5b regulates mesenchymal cell aggregation and chondrocyte differentiation through the planar cell polarity pathway. Journal of Cellular Physiology, 226, 1683–1693.PubMedCrossRefGoogle Scholar
  130. 130.
    Martin, I., Suetterlin, R., Baschong, W., Heberer, M., Vunjak-Novakovic, G., & Freed, L. E. (2001). Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. Journal of Cellular Biochemistry, 83, 121–128.PubMedCrossRefGoogle Scholar
  131. 131.
    Pei, M., He, F., & Vunjak-Novakovic, G. (2008). Synovium-derived stem cell-based chondrogenesis. Differentiation, 76, 1044–1056.PubMedCrossRefGoogle Scholar
  132. 132.
    Pei, M., Seidel, J., Vunjak-Novakovic, G., & Freed, L. E. (2002). Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochemical and Biophysical Research Communications, 294, 149–154.PubMedCrossRefGoogle Scholar
  133. 133.
    Worster, A. A., Brower-Toland, B. D., Fortier, L. A., Bent, S. J., Williams, J., & Nixon, A. J. (2001). Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-beta1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. Journal of Orthopaedic Research, 19, 738–749.PubMedCrossRefGoogle Scholar
  134. 134.
    Gong, Z., Xiong, H., Long, X., Wei, L., Li, J., Wu, Y., et al. (2010). Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering. Biomedical materials (Bristol, England), 5, 055005.Google Scholar
  135. 135.
    Fong, C. Y., Subramanian, A., Gauthaman, K., Venugopal, J., Biswas, A., Ramakrishna, S., et al. (2011). Human umbilical cord wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Review.Google Scholar
  136. 136.
    Byers, B. A., Mauck, R. L., Chiang, I. E., & Tuan, R. S. (2008). Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Engineering. Part A, 14, 1821–1834.PubMedCrossRefGoogle Scholar
  137. 137.
    Buxton, A. N., Bahney, C. S., Yoo, J. U., & Johnstone, B. (2011). Temporal exposure to chondrogenic factors modulates human mesenchymal stem cell chondrogenesis in hydrogels. Tissue Engineering. Part A, 17, 371–380.PubMedCrossRefGoogle Scholar
  138. 138.
    Hellingman, C. A., Koevoet, W., Kops, N., Farrell, E., Jahr, H., Liu, W., et al. (2010). Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Engineering. Part A, 16, 545–556.PubMedCrossRefGoogle Scholar
  139. 139.
    Kim, Y. J., Kim, H. J., & Im, G. I. (2008). PTHrP promotes chondrogenesis and suppresses hypertrophy from both bone marrow-derived and adipose tissue-derived MSCs. Biochemical and Biophysical Research Communications, 373, 104–108.PubMedCrossRefGoogle Scholar
  140. 140.
    Park, J. S., Woo, D. G., Yang, H. N., Na, K., & Park, K. H. (2009). Transforming growth factor b-3 bound with sulfate polysaccharide in synthetic extracellular matrix enhanced the biological activities for neocartilage formation in vivo. Journal of Biomedical Materials Research, 91A, 408–415.CrossRefGoogle Scholar
  141. 141.
    Bae, S. E., Choi, D. H., Han, D. K., & Park, K. (2010). Effect of temporally controlled release of dexamethasone on in vivo chondrogenic differentiation of mesenchymal stromal cells. Journal of Controlled Release, 143, 23–30.PubMedCrossRefGoogle Scholar
  142. 142.
    Spiller, K. L., Liu, Y., Holloway, J. L., Maher, S. A., Cao, Y., Liu, W., et al. (2011). A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: Controlled release for cartilage tissue engineering. Journal of Control Release.Google Scholar
  143. 143.
    Holland, T. A., Bodde, E. W., Cuijpers, V. M., Baggett, L. S., Tabata, Y., Mikos, A. G., et al. (2007). Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society., 15, 187–197.PubMedCrossRefGoogle Scholar
  144. 144.
    Chung, C., Beecham, M., Mauck, R. L., & Burdick, J. A. (2009). The influence of degradation characteristics of hyaluronic acid hydrogels on in vitro neocartilage formation by mesenchymal stem cells. Biomaterials, 30, 4287–4296.PubMedCrossRefGoogle Scholar
  145. 145.
    Sahoo, S., Chung, C., Khetan, S., & Burdick, J. A. (2008). Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules, 9, 1088–1092.PubMedCrossRefGoogle Scholar
  146. 146.
    Park, Y., Lutolf, M., Hubbell, J., Hunziker, E., & Wong, M. (2004). Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Engineering, 10, 515–523.PubMedCrossRefGoogle Scholar
  147. 147.
    Bahney, C. S., Hsu, C. W., Yoo, J. U., West, J. L., & Johnstone, B. (2011). A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB Journal.Google Scholar
  148. 148.
    Kloxin, A. M., Kasko, A. M., Salinas, C. N., & Anseth, K. S. (2009). Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science, 324, 59–63.PubMedCrossRefGoogle Scholar
  149. 149.
    Bryant, S. J., Nicodemus, G. D., & Villanueva, I. (2008). Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering. Pharmaceutical Research, 25, 2379–2386.PubMedCrossRefGoogle Scholar
  150. 150.
    Villanueva, I., Hauschulz, D. S., Mejic, D., & Bryant, S. J. (2008). Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society., 16, 909–918.PubMedCrossRefGoogle Scholar
  151. 151.
    Millward-Sadler, S. J., & Salter, D. M. (2004). Integrin-dependent signal cascades in chondrocyte mechanotransduction. Annals of Biomedical Engineering, 32, 435–446.PubMedCrossRefGoogle Scholar
  152. 152.
    Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., & Hunziker, E. B. (1995). Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. Journal of Cell Science, 108(Pt 4), 1497–1508.PubMedGoogle Scholar
  153. 153.
    Lee, D. A., & Bader, D. L. (1997). Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. Journal of Orthopaedic Research, 15, 181–188.PubMedCrossRefGoogle Scholar
  154. 154.
    Grodzinsky, A. J., Levenston, M. E., Jin, M., & Frank, E. H. (2000). Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2, 691–713.PubMedCrossRefGoogle Scholar
  155. 155.
    Hunter, C. J., Imler, S. M., Malaviya, P., Nerem, R. M., & Levenston, M. E. (2002). Mechanical compression alters gene expression and extracellular matrix synthesis by chondrocytes cultured in collagen I gels. Biomaterials, 23, 1249–1259.PubMedCrossRefGoogle Scholar
  156. 156.
    Lee, C. R., Grodzinsky, A. J., & Spector, M. (2003). Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. Journal of Biomedical Materials Research, 64A, 560–569.CrossRefGoogle Scholar
  157. 157.
    Mauck, R. L., Byers, B. A., Yuan, X., & Tuan, R. S. (2007). Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomechanics and Modeling in Mechanobiology, 6, 113–125.PubMedCrossRefGoogle Scholar
  158. 158.
    Bian, L., Fong, J. V., Lima, E. G., Stoker, A. M., Ateshian, G. A., Cook, J. L., et al. (2010). Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Engineering. Part A, 16, 1781–1790.PubMedCrossRefGoogle Scholar
  159. 159.
    Nicodemus, G. D., & Bryant, S. J. (2010). Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society., 18, 126–137.PubMedCrossRefGoogle Scholar
  160. 160.
    Huang, A. H., Farrell, M. J., Kim, M., & Mauck, R. L. (2010). Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. European Cells & Materials, 19, 72–85.Google Scholar
  161. 161.
    Kisiday, J. D., Lee, J. H., Siparsky, P. N., Frisbie, D. D., Flannery, C. R., Sandy, J. D., et al. (2009). Catabolic responses of chondrocyte-seeded peptide hydrogel to dynamic compression. Annals of Biomedical Engineering, 37, 1368–1375.PubMedCrossRefGoogle Scholar
  162. 162.
    De Croos, J. N., Dhaliwal, S. S., Grynpas, M. D., Pilliar, R. M., & Kandel, R. A. (2006). Cyclic compressive mechanical stimulation induces sequential catabolic and anabolic gene changes in chondrocytes resulting in increased extracellular matrix accumulation. Matrix Biology, 25, 323–331.PubMedCrossRefGoogle Scholar
  163. 163.
    Roddy, K. A., Prendergast, P. J., & Murphy, P. (2011). Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS One, 6, e17526.PubMedCrossRefGoogle Scholar
  164. 164.
    Roddy, K. A., Kelly, G. M., van Es, M. H., Murphy, P., & Prendergast, P. J. (2011). Dynamic patterns of mechanical stimulation co-localise with growth and cell proliferation during morphogenesis in the avian embryonic knee joint. Journal of Biomechanics, 44, 143–149.PubMedCrossRefGoogle Scholar
  165. 165.
    Terraciano, V., Hwang, N., Moroni, L., Park, H. B., Zhang, Z., Mizrahi, J., et al. (2007). Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells, 25, 2730–2738.PubMedCrossRefGoogle Scholar
  166. 166.
    Li, Z., Kupcsik, L., Yao, S. J., Alini, M., & Stoddart, M. J. (2010). Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. Journal of Cellular and Molecular Medicine, 14, 1338–1346.PubMedCrossRefGoogle Scholar
  167. 167.
    Li, Z., Yao, S. J., Alini, M., & Stoddart, M. J. (2010). Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites is modulated by frequency and amplitude of dynamic compression and shear stress. Tissue Engineering Part A, 16, 575–584.PubMedCrossRefGoogle Scholar
  168. 168.
    Mouw, J. K., Connelly, J. T., Wilson, C. G., Michael, K. E., & Levenston, M. E. (2007). Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells, 25, 655–663.PubMedCrossRefGoogle Scholar
  169. 169.
    Huang, C. Y., Reuben, P. M., & Cheung, H. S. (2005). Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells, 23, 1113–1121.PubMedCrossRefGoogle Scholar
  170. 170.
    Huang, C. Y., Hagar, K. L., Frost, L. E., Sun, Y., & Cheung, H. S. (2004). Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells, 22, 313–323.PubMedCrossRefGoogle Scholar
  171. 171.
    Angele, P., Schumann, D., Angele, M., Kinner, B., Englert, C., Hente, R., et al. (2004). Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology, 41, 335–346.PubMedGoogle Scholar
  172. 172.
    Lima, E. G., Bian, L., Ng, K. W., Mauck, R. L., Byers, B. A., Tuan, R. S., et al. (2007). The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis and Cartilage, 15, 1025–1033.PubMedCrossRefGoogle Scholar
  173. 173.
    Thorpe, S. D., Buckley, C. T., Vinardell, T., O’Brien, F. J., Campbell, V. A., & Kelly, D. J. (2008). Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 377, 458–462.PubMedCrossRefGoogle Scholar
  174. 174.
    Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J., & Discher, D. E. (2007). Physical plasticity of the nucleus in stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 104, 15619–15624.PubMedCrossRefGoogle Scholar
  175. 175.
    Nicodemus, G. D., Skaalure, S. C., & Bryant, S. J. (2010). Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels. Acta Biomaterialia.Google Scholar
  176. 176.
    Soltz, M. A., & Ateshian, G. A. (1998). Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of Biomechanics, 31, 927–934.PubMedCrossRefGoogle Scholar
  177. 177.
    Malda, J., Martens, D. E., Tramper, J., van Blitterswijk, C. A., & Riesle, J. (2003). Cartilage tissue engineering: controversy in the effect of oxygen. Critical Reviews in Biotechnology, 23, 175–194.PubMedGoogle Scholar
  178. 178.
    Grimshaw, M. J., & Mason, R. M. (2001). Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society., 9, 357–364.PubMedCrossRefGoogle Scholar
  179. 179.
    Lewis, M. C., Macarthur, B. D., Malda, J., Pettet, G., & Please, C. P. (2005). Heterogeneous proliferation within engineered cartilaginous tissue: the role of oxygen tension. Biotechnology and Bioengineering, 91, 607–615.PubMedCrossRefGoogle Scholar
  180. 180.
    Malda, J., Rouwkema, J., Martens, D. E., Le Comte, E. P., Kooy, F. K., Tramper, J., et al. (2004). Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnology and Bioengineering, 86, 9–18.PubMedCrossRefGoogle Scholar
  181. 181.
    Gooch, K. J., Kwon, J. H., Blunk, T., Langer, R., Freed, L. E., & Vunjak-Novakovic, G. (2001). Effects of mixing intensity on tissue-engineered cartilage. Biotechnology and Bioengineering, 72, 402–407.PubMedCrossRefGoogle Scholar
  182. 182.
    Pei, M., Solchaga, L. A., Seidel, J., Zeng, L., Vunjak-Novakovic, G., Caplan, A. I., et al. (2002). Bioreactors mediate the effectiveness of tissue engineering scaffolds. The FASEB Journal, 16, 1691–1694.Google Scholar
  183. 183.
    Davisson, T., Kunig, S., Chen, A., Sah, R., & Ratcliffe, A. (2002). Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. Journal of Orthopaedic Research, 20, 842–848.PubMedCrossRefGoogle Scholar
  184. 184.
    Mauck, R. L., Soltz, M. A., Wang, C. C., Wong, D. D., Chao, P. H., Valhmu, W. B., et al. (2000). Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. Journal of Biomechanical Engineering, 122, 252–260.PubMedCrossRefGoogle Scholar
  185. 185.
    Lafont, J. E. (2010). Lack of oxygen in articular cartilage: consequences for chondrocyte biology. International Journal of Experimental Pathology, 91, 99–106.PubMedCrossRefGoogle Scholar
  186. 186.
    Murphy, C. L., Thoms, B. L., Vaghjiani, R. J., & Lafont, J. E. (2009). Hypoxia. HIF-mediated articular chondrocyte function: prospects for cartilage repair. Arthritis Research & Therapy, 11, 213.CrossRefGoogle Scholar
  187. 187.
    Baumgartner, L., Arnhold, S., Brixius, K., Addicks, K., & Bloch, W. (2010). Human mesenchymal stem cells: Influence of oxygen pressure on proliferation and chondrogenic differentiation in fibrin glue in vitro. Journal of Biomedical Materials Research. Part A, 93, 930–940.PubMedGoogle Scholar
  188. 188.
    Ronziere, M. C., Perrier, E., Mallein-Gerin, F., & Freyria, A. M. (2010). Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Biomedical Materials and Engineering, 20, 145–158.PubMedGoogle Scholar
  189. 189.
    Markway, B. D., Tan, G. K., Brooke, G., Hudson, J. E., Cooper-White, J. J., & Doran, M. R. (2010). Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplantation, 19, 29–42.PubMedCrossRefGoogle Scholar
  190. 190.
    Loscalzo, J. (2010). The cellular response to hypoxia: tuning the system with microRNAs. The Journal of Clinical Investigation, 120, 3815–3817.PubMedCrossRefGoogle Scholar
  191. 191.
    Salinas, C. N., & Anseth, K. S. (2009). Mesenchymal stem cells for craniofacial tissue regeneration: designing hydrogel delivery vehicles. Journal of Dental Research, 88, 681–692.PubMedCrossRefGoogle Scholar
  192. 192.
    Gordeladze, J. O., Djouad, F., Brondello, J. M., Noel, D., Duroux-Richard, I., Apparailly, F., et al. (2009). Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacologica Sinica, 30, 1369–1384.PubMedCrossRefGoogle Scholar
  193. 193.
    Dunn, W., DuRaine, G., & Reddi, A. H. (2009). Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis and Rheumatism, 60, 2333–2339.PubMedCrossRefGoogle Scholar
  194. 194.
    Sun, J., Zhong, N., Li, Q., Min, Z., Zhao, W., Sun, Q., et al. (2011). MicroRNAs of rat articular cartilage at different developmental stages identified by Solexa sequencing. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society., 19, 1237–1245.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ivana Gadjanski
    • 1
    • 2
  • Kara Spiller
    • 1
  • Gordana Vunjak-Novakovic
    • 1
    • 3
  1. 1.Department of Biomedical EngineeringColumbia UniversityNew YorkUSA
  2. 2.R&D Center for BioengineeringMetropolitan University BelgradeKragujevacSerbia
  3. 3.Laboratory for Stem Cells and Tissue Engineering, Department of Biomedical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations