Skip to main content

Advertisement

Log in

Regeneration of Three Layers Vascular Wall by using BMP2-Treated MSC Involving HIF-1α and Id1 Expressions Through JAK/STAT Pathways

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Summary

Engineering living, multilayered blood vessels to form in vivo arteries is a promising alternative to peripheral artery bypass using acellular grafts restricted by thrombosis and occlusion at long term. Bone Morphogenetic Protein 2 (BMP2) is a growth factor determining in the early vascular embryonic development. The aim of the present study was evaluate the collaborative effect of recombinant human—BMP2 and Bone marrow—Mesenchymal stem cells (BM-MSCs) seeded on vascular patch to regenerate a vascular arterial wall in a rat model. BM-MSCs expressing green fluorescent protein (GFP) seeded on vascular patch were cultured in presence of recombinant human-BMP2 [100 ng/mL] during 1 week before their implantation on the abdominal aorta of Wistar rats. We observed after 2 weeks under physiological arterial flow a regeneration of a three layers adult-like arterial wall with a middle layer expressing smooth muscle proteins and a border layer expressing endothelial marker. In vitro study, using Matrigel assay and co-culture of BM-MSCs with endothelial cells demonstrated that rh-BMP2 promoted tube-like formation even at long term (90 days) allowing the organization of thick rails. We demonstrated using inhibitors and siRNAs that rh-BMP2 enhanced the expression of HIF-1α and Id1 through, at least in part, the stimulation of JAK2/STAT3/STAT5 signaling pathways. Rh-BMP2 by mimicking embryological conditions allowed vascular BM-MSCs differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zdrahala, R. J. (1996). Small caliber vascular grafts. Part I: state of the art. Journal of Biomaterials Applications, 10(4), 309–29.

    PubMed  CAS  Google Scholar 

  2. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.

    Article  PubMed  CAS  Google Scholar 

  3. Bhatia, R., & Hare, J. M. (2005). Mesenchymal stem cells: future source for reparative medicine. Congestive Heart Failure, 11(2), 87–91. quiz 2-3.

    Article  PubMed  Google Scholar 

  4. Huang, N. F., & Li, S. (2008). Mesenchymal stem cells for vascular regeneration. Regenerative Medicine, 3(6), 877–92.

    Article  PubMed  Google Scholar 

  5. L’Heureux, N., Dusserre, N., Konig, G., et al. (2006). Human tissue-engineered blood vessels for adult arterial revascularization. Natural Medicines, 12(3), 361–5.

    Article  Google Scholar 

  6. Hashi, C. K., Zhu, Y., Yang, G. Y., et al. (2007). Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 11915–20.

    Article  PubMed  CAS  Google Scholar 

  7. Kanki-Horimoto, S., Horimoto, H., Mieno, S., et al. (2006). Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation, 114(1 Suppl), I181–5.

    PubMed  Google Scholar 

  8. Zhang, L., Zhou, J., Lu, Q., Wei, Y., & Hu, S. (2008). A novel small-diameter vascular graft: in vivo behavior of biodegradable three-layered tubular scaffolds. Biotechnology and Bioengineering, 99(4), 1007–15.

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt, A., Ladage, D., Schinkothe, T., et al. (2006). Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 24(7), 1750–8.

    Article  PubMed  CAS  Google Scholar 

  10. Lin, H., Shabbir, A., Molnar, M., et al. (2008). Adenoviral expression of vascular endothelial growth factor splice variants differentially regulate bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology, 216(2), 458–68.

    Article  PubMed  CAS  Google Scholar 

  11. Schlange, T., Andree, B., Arnold, H. H., & Brand, T. (2000). BMP2 is required for early heart development during a distinct time period. Mechanisms of Development, 91(1–2), 259–70.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, D., Zhao, M., & Mundy, G. R. (2004). Bone morphogenetic proteins. Growth Factors, 22(4), 233–41.

    Article  PubMed  CAS  Google Scholar 

  13. Gupta, S., Zhu, H., Zon, L. I., & Evans, T. (2006). BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis. Development, 133(11), 2177–87.

    Article  PubMed  CAS  Google Scholar 

  14. Semenza, G. L. (2000). HIF-1: mediator of physiological and pathophysiological responses to hypoxia. Journal of Applied Physiology, 88(4), 1474–80.

    PubMed  CAS  Google Scholar 

  15. Lee, T. K., Poon, R. T., Yuen, A. P., et al. (2006). Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1alpha-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clinical Cancer Research, 12(23), 6910–9.

    Article  PubMed  CAS  Google Scholar 

  16. Bonnet, P., Awede, B., Rochefort, G. Y., et al. (2008). Electrophysiological maturation of rat mesenchymal stem cells after induction of vascular smooth muscle cell differentiation in vitro. Stem Cells and Development, 17(6), 1131–40.

    Article  PubMed  CAS  Google Scholar 

  17. Mirza, A., Hyvelin, J. M., Rochefort, G. Y., et al. (2008). Undifferentiated mesenchymal stem cells seeded on a vascular prosthesis contribute to the restoration of a physiologic vascular wall. Journal of Vascular Surgery, 47(6), 1313–21.

    Article  PubMed  Google Scholar 

  18. Schweitzer, K. M., Vicart, P., Delouis, C., et al. (1997). Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Laboratory Investigation, 76(1), 25–36.

    PubMed  CAS  Google Scholar 

  19. Macera, M. J., Szabo, P., Wadgaonkar, R., Siddiqui, M. A., & Verma, R. S. (1992). Localization of the gene coding for ventricular myosin regulatory light chain (MYL2) to human chromosome 12q23-q24.3. Genomics, 13(3), 829–31.

    Article  PubMed  CAS  Google Scholar 

  20. Jung, J. E., Kim, H. S., Lee, C. S., et al. (2008). STAT3 inhibits the degradation of HIF-1alpha by pVHL-mediated ubiquitination. Experimental & Molecular Medicine, 40(5), 479–85.

    Article  CAS  Google Scholar 

  21. Wood, A. D., Chen, E., Donaldson, I. J., et al. (2009). ID1 promotes expansion and survival of primary erythroid cells and is a target of JAK2V617F-STAT5 signaling. Blood, 114(9), 1820–30.

    Article  PubMed  CAS  Google Scholar 

  22. Sorrell, J. M., Baber, M. A., & Caplan, A. I. (2009). Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Engineering. Part A, 15(7), 1751–61.

    Article  PubMed  CAS  Google Scholar 

  23. Diefenderfer, D. L., & Brighton, C. T. (2000). Microvascular pericytes express aggrecan message which is regulated by BMP-2. Biochemical and Biophysical Research Communications, 269(1), 172–8.

    Article  PubMed  CAS  Google Scholar 

  24. Au, P., Tam, J., Fukumura, D., & Jain, R. K. (2008). Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood, 111(9), 4551–8.

    Article  PubMed  CAS  Google Scholar 

  25. Kotch, L. E., Iyer, N. V., Laughner, E., & Semenza, G. L. (1999). Defective vascularization of HIF-1alpha-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Developmental Biology, 209(2), 254–67.

    Article  PubMed  CAS  Google Scholar 

  26. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Natural Medicines, 10(8), 858–64.

    Article  CAS  Google Scholar 

  27. Raida, M., Clement, J. H., Leek, R. D., et al. (2005). Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. Journal of Cancer Research and Clinical Oncology, 131(11), 741–50.

    Article  PubMed  CAS  Google Scholar 

  28. Wang, G. L., & Semenza, G. L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90(9), 4304–8.

    Article  PubMed  CAS  Google Scholar 

  29. Wincewicz, A., Sulkowska, M., Koda, M., Lesniewicz, T., Kanczuga-Koda, L., & Sulkowski, S. (2007). STAT3, HIF-1alpha, EPO and EPOR—signaling proteins in human primary ductal breast cancers. Folia Histochemica et Cytobiologica, 45(2), 81–6.

    PubMed  CAS  Google Scholar 

  30. Su, Y., Zheng, L., Wang, Q., Bao, J., Cai, Z., & Liu, A. The PI3K/Akt pathway upregulates Id1 and integrin alpha4 to enhance recruitment of human ovarian cancer endothelial progenitor cells. BMC Cancer, 10, 459.

  31. Grote, K., Luchtefeld, M., & Schieffer, B. (2005). JANUS under stress–role of JAK/STAT signaling pathway in vascular diseases. Vascular Pharmacology, 43(5), 357–63.

    Article  PubMed  CAS  Google Scholar 

  32. Jiang, H., Patel, P. H., Kohlmaier, A., Grenley, M. O., McEwen, D. G., & Edgar, B. A. (2009). Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell, 137(7), 1343–55.

    Article  PubMed  Google Scholar 

  33. Pan, J., Fukuda, K., Saito, M., et al. (1999). Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circulation Research, 84(10), 1127–36.

    PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Belmokhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belmokhtar, K., Bourguignon, T., Worou, M.E. et al. Regeneration of Three Layers Vascular Wall by using BMP2-Treated MSC Involving HIF-1α and Id1 Expressions Through JAK/STAT Pathways. Stem Cell Rev and Rep 7, 847–859 (2011). https://doi.org/10.1007/s12015-011-9254-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9254-6

Keywords

Navigation