Skip to main content
Log in

Influence of E-Cadherin-Mediated Cell Adhesion on Mouse Embryonic Stem Cells Derivation from Isolated Blastomeres

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Efforts to efficiently derive embryonic stem cells (ESC) from isolated blastomeres have been done to minimize ethical concerns about human embryo destruction. Previous studies in our laboratory indicated a poor derivation efficiency of mouse ESC lines from isolated blastomeres at the 8-cell stage (1/8 blastomeres) due, in part, to a low division rate of the single blastomeres in comparison to their counterparts with a higher number of blastomeres (2/8, 3/8 and 4/8 blastomeres). Communication and adhesion between blastomeres from which the derivation process begins could be important aspects to efficiently derive ESC lines. In the present study, an approach consisting in the adhesion of a chimeric E-cadherin (E-cad-Fc) to the blastomere surface was devised to recreate the signaling produced by native E-cadherin between neighboring blastomeres inside the embryo. By this approach, the division rate of 1/8 blastomeres increased from 44.6% to 88.8% and a short exposure of 24 h to the E-cad-Fc produced an ESC derivation efficiency of 33.6%, significantly higher than the 2.2% obtained from the control group without E-cad-Fc. By contrast, a longer exposure to the same chimeric protein resulted in higher proportions of trophoblastic vesicles. Thus, we establish an important role of E-cadherin-mediated adherens junctions in promoting both the division of single 1/8 blastomeres and the efficiency of the ESC derivation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Brook, F. A., & Gardner, R. L. (1997). The origin and efficient derivation of embryonic stem cells in the mouse. Proceedings of the National Academy of Sciences, 94(11), 5709–5712.

    Article  CAS  Google Scholar 

  2. Chung, Y., Klimanskaya, I., Becker, S., et al. (2006). Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature. doi:10.1038/nature04277.

    Google Scholar 

  3. Chung, Y., Klimanskaya, I., Becker, S., et al. (2008). Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell. doi:10.1016/j.stem.2007.12.013.

    Google Scholar 

  4. Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., & Lanza, R. (2006). Human embryonic stem cell lines derived from single blastomeres. Nature. doi:10.1038/nature05142.

    Google Scholar 

  5. Wakayama, S., Hikichi, T., Suetsugu, R., et al. (2007). Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells. doi:0.1634/stemcells.2006-0615.

    Google Scholar 

  6. Fleming, T. P., Javed, Q., Collins, J., & Hay, M. (1993). Biogenesis of structural intercellular junctions during cleavage in the mouse embryo. Journal of Cell Science Supplement, 17, 119–125.

    PubMed  CAS  Google Scholar 

  7. Steinberg, M. S., & McNutt, P. M. (1999). Cadherins and their connections: adhesion junctions have broader functions. Current Opinion in Cell Biology. doi:10.1016/S0955-0674(99)00027-7.

    PubMed  Google Scholar 

  8. Clayton, L., Stinchcombe, S. V., & Johnson, M. H. (1993). Cell surface localisation and stability of uvomorulin during early mouse development. Zygote. doi:10.1017/S0967199400001660.

    PubMed  Google Scholar 

  9. Riethmacher, D., Brinkmann, V., & Birchmeier, C. (1995). A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proceedings of the National Academy of Sciences, 92(3), 855–859.

    Article  CAS  Google Scholar 

  10. Kan, N. G., Stemmler, M. P., Junghans, D., et al. (2007). Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development. doi:10.1242/dev.02722.

    PubMed  Google Scholar 

  11. Chou, Y. F., Chen, H. H., Eijpe, M., et al. (2008). The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell. doi:10.1016/j.cell.2008.08.035.

    Google Scholar 

  12. Li, Z., Qiu, D., & Sridharan, I. (2010). Spatially resolved quantification of E-cadherin on target hES cells. The Journal of Physical Chemistry B. doi:10.1021/jp906737q.

    Google Scholar 

  13. Spencer, H. L., Eastham, A. M., Merry, C. L., et al. (2007). E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Molecular Biology of the Cell. doi:10.1091/mbc.E06-09-0875.

    PubMed  Google Scholar 

  14. Xu, Y., Zhu, X., & Hahm, H. S. (2010). Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1002024107.

    Google Scholar 

  15. Soncin, F., Mohamet, L., Eckardt, D., et al. (2009). Abrogation of E-cadherin-mediated cell-cell contact in mouse embryonic stem cells results in reversible LIF-independent self-renewal. Stem Cells. doi:10.1002/stem.134.

    PubMed  Google Scholar 

  16. Xu, Y., Zhu, X., Hahm, H. S., et al. (2010). Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1002024107.

    Google Scholar 

  17. Chen, G., Hou, Z., Gulbranson, D. R., & Thomson, J. A. (2010). Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell. doi:10.1016/j.stem.2010.06.017.

    Google Scholar 

  18. Ohgushi, M., Matsumura, M., Eiraku, M., et al. (2010). Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell. doi:10.1016/j.stem.2010.06.018.

    PubMed  Google Scholar 

  19. Brembeck, F. H., Rosario, M., & Birchmeier, W. (2006). Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Current Opinion in Genetics & Development. doi:10.1016/j.gde.2005.12.007.

    Google Scholar 

  20. Sineva, G. S., & Pospelov, V. A. (2010). Inhibition of GSK3beta enhances both adhesive and signaling activities of beta-catenin in mouse embryonic stem cells. Biology of the Cell. doi:10.1042/BC20100016.

    PubMed  Google Scholar 

  21. González, S., Ibañez, E., & Santaló, J. (2010). Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods. Journal of Assisted Reproduction and Genetics. doi:10.1007/s10815-010-9473-9.

    PubMed  Google Scholar 

  22. Martin, G. R., & Evans, M. J. (1975). Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proceedings of the National Academy of Sciences, 72(4), 1441–1445.

    Article  CAS  Google Scholar 

  23. Handyside, A. H., Pattinson, J. K., Penketh, R. J., Delhanty, J. D., Winston, R. M., & Tuddenham, E. G. (1989). Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet. doi:10.1016/S0140-6736(89)91723-6.

    Google Scholar 

  24. Tanaka, S. (2006). Derivation and culture of mouse trophoblast stem cells in vitro. Methods in Molecular Biology. Embryonic stem cell protocols (pp. 35–44). Humana Press.

  25. Vleminckx, K., & Kemler, R. (1999). Cadherins and tissue formation: integrating adhesion and signaling. Bioessays, 21(3), 211–220.

    Article  PubMed  CAS  Google Scholar 

  26. Rossant, J. (2001). Stem cells from the Mammalian blastocyst. Stem Cells. doi:10.1634/stemcells.19-6-477.

    PubMed  Google Scholar 

  27. Vestweber, D., Gossler, A., Boller, K., & Kemler, R. (1987). Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Developmental Biology. doi:10.1016/0012-1606(87)90498-2.

    PubMed  Google Scholar 

  28. Bienz, M. (2005). Beta-Catenin: a pivot between cell adhesion and Wnt signalling. Current Biology. doi:10.1016/j.cub.2004.12.058.

    PubMed  Google Scholar 

  29. Willert, K., & Nusse, R. (1998). Beta-catenin: a key mediator of Wnt signaling. Current Opinion in Genetics & Development. doi:10.1016/S0959-437X(98)80068-3.

    Google Scholar 

Download references

Acknowledgements

This work received financial support from the Spanish Ministerio de Educación y Ciencia (MEC) projects BIO 2005-04341 and BIO2006-11792, the Generalitat de Catalunya DGR project #2009SGR-00282 and MEC FPU fellowship AP2006-02038. We thank Marc Puigcerver and Jonatan Lucas for their technical assistance.

Conflicts of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Santaló.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, S., Ibáñez, E. & Santaló, J. Influence of E-Cadherin-Mediated Cell Adhesion on Mouse Embryonic Stem Cells Derivation from Isolated Blastomeres. Stem Cell Rev and Rep 7, 494–505 (2011). https://doi.org/10.1007/s12015-010-9221-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9221-7

Keywords

Navigation