The Stem Cell Niche Should be a Key Issue for Cell Therapy in Regenerative Medicine

Abstract

Recent advances in stem cell research have highlighted the role played by such cells and their environment (the stem cell niche) in tissue renewal and homeostasis. The control and regulation of stem cells and their niche are remaining challenges for cell therapy and regenerative medicine on several tissues and organs. These advances are important for both, the basic knowledge of stem cell regulation, and their practical translational applications into clinical medicine. This article is primarily concerned with the mesenchymal stem cells (MSCs) and it reviews the current aspects of their own niche. We discuss on the need for a deeper understanding of the identity of this cell type and its microenvironment in order to improve the effectiveness of any cell therapy for regenerative medicine. Ex vivo reproduction of the conditions of the natural stem cell niche, when necessary, would provide success to tissue engineering. The first challenge of regenerative medicine is to find cells able to replace and/or repair the lost function of tissues and organs by disease or aging and the trophic and immunomodulatory effects recently found for MSCs open up for new opportunities. If MSCs are pericytes, as it has been proposed, perhaps it may explain the ubiquity of these cells and their possible role in miscellaneous repairs throughout the body opening for new chances for extensive tissue repair.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    PubMed  CAS  Google Scholar 

  2. 2.

    Tarnowski, M., & Sieron, A. L. (2006). Adult stem cells and their ability to differentiate. Medical Science Monitor, 12(8), RA154–RA163.

    PubMed  Google Scholar 

  3. 3.

    Weissman, I. L. (2000). Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 287, 1442–1446.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Fuchs, E., Tumbar, T., & Guasch, G. (2004). Socializing with the neighbors: stem cells and their niche. Cell, 116, 769–778.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Mitsiadis, T. A., Barrandon, O., Rochat, A., et al. (2007). Stem cell niches in mammals. Experimental Cell Research, 313, 3377–3385.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Sato, T., Vries, R. G., Snippert, H. J., et al. (2009). Single Lgr5 stem cells build crypt–villus structures invitro without a mesenchymal Niche. Nature, 459, 262–266.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Gilbert, S. F., & Raunio, A. M. (Eds.). (1997). Embryology: constructing the organism. Sunderland, Mass: Sinauer Associates.

    Google Scholar 

  9. 9.

    Slack, J. M. W. (1991). From egg to embryo: regional specification in early development. Cambridge: CUP.

    Google Scholar 

  10. 10.

    Baguñá, J., Saló, E., & Auladell, C. (1989). Regeneration and pattern formation in planarians. III. that neoblasts are totipotent stem cells and the cells. Development, 107, 77–86.

    Google Scholar 

  11. 11.

    Caplan, A. I. (2009). New era of cell-based orthopedic therapies. Tissue Engineering, B: Reviews, 15(2), 195–200.

    Article  CAS  Google Scholar 

  12. 12.

    Hoogduijn, M. J., Popp, F., Verbeek, R. et al. (2010). The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol, (Epub ahead of print)

  13. 13.

    Yagi, H., Soto-Gutiérrez, A., Parekkadan, B., et al.. (2010). Mesenchymal Stem Cells: Mechanisms of Immunomodulation and Homing. Cell Transplant, (Epub ahead of print)

  14. 14.

    Sadan, O., Melamed, E., & Offen, D. (2009). Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opinion on Biological Therapy, 9(12), 1487–1497.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Granero-Moltó, F., Weis, J. A., Miga, M. I., et al. (2009). Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells, 27(8), 1887–1898.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Till, J. E., & Mcculloch, E. A. (1964). Repair Processes in Irradiated Mouse Hematopoietic. Annals of the New York Academy of Sciences, 114, 115–125.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Penn, M. S., & Khalil, M. K. (2008). Exploitation of stem cell homing for gene delivery. Expert Opinion on Biological Therapy, 8(1), 17–30.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Schurgers, E., Kelchtermans, H., Mitera, T., et al. (2010). Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Research & Therapy, 12(1), R31.

    Article  CAS  Google Scholar 

  19. 19.

    Uccelli, A., Mancardi, G., & Chiesa, S. (2008). Is there a role for mesenchymal stem cells in autoimmune diseases? Autoimmunity, 41(8), 592–595.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Tyndall, A., & Houssiau, F. A. (2010). Mesenchymal stem cells in the treatment of autoimmune diseases. Annals of the Rheumatic Diseases, 69(8), 1413–1414.

    PubMed  Article  Google Scholar 

  21. 21.

    Scherer, H. U., van Pel, M., & Toes, R. E. (2010). Mesenchymal stem cells in autoimmune diseases: hype or hope? Arthritis Research Therapy, 12(3), 126.

    PubMed  Article  Google Scholar 

  22. 22.

    Pistoia, V., & Raffaghello, L. (2010). Potential of mesenchymal stem cells for the therapy of autoimmune diseases. Expert Review of Clinical Immunology, 6(2), 211–218.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Fiorina, P., Jurewicz, M., Augello, A., et al. (2009). Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. Journal of Immunology, 183(2), 993–1004.

    Article  CAS  Google Scholar 

  24. 24.

    Rafei, M., Birman, E., Forner, K., & Galipeau, J. (2009). Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. Molecular Therapy, 17(10), 1799–1803.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Zhang, H., Zeng, X., & Sun, L. (2010). Allogenic bone-marrow-derived mesenchymal stem cells transplantation as a novel therapy for systemic lupus erythematosus. Expert Opinion on Biological Therapy, 10(5), 701–709.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Tsuda, H., Yamahara, K., Ishikane, S., et al. (2010). Allogenic fetal membrane-derived mesenchymal stem cells contribute to renal repair in experimental glomerulonephritis. Am J Physiol Renal Physiol. (Epub ahead of print).

  27. 27.

    Prasad VK, Lucas KG, Kleiner GI, Talano JA, et al. (2010). Efficacy and Safety of Ex-vivo Cultured Adult Human Mesenchymal Stem Cells (Prochymal (TM)) in Pediatric Patients with Severe Refractory Acute Graft-Versus-Host Disease in a Compassionate Use study. Biol Blood Marrow Transplant. (Epub ahead of print).

  28. 28.

    Guillot, P. V., De Bari, C., Dell’Accio, F., et al. (2008). Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation, 76(9), 946–957.

    PubMed  CAS  Google Scholar 

  29. 29.

    Chamberlain, J. R., Deyle, D. R., Schwarze, U., et al. (2008). Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Molecular Therapy, 16(1), 187–193.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Jethva, R., Otsuru, S., Dominici, M., & Horwitz, E. M. (2009). Cell therapy for disorders of bone. Cytotherapy, 11(1), 3–17.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Niyibizi, C., & Li, F. (2009). Potential implications of cell therapy for osteogenesis imperfecta. International Journal of Clinical Rheumtology, 4(1), 57–66.

    Article  Google Scholar 

  32. 32.

    Tarnowski, M., Szydło, A., Anioł, J., et al. (2010). Optimization of genetic engineering and homologous recombination of collagen type I genes in rat bone marrow mesenchymal stem cells (MSC). Cell Reprogram, 12(3), 275–282.

    PubMed  CAS  Google Scholar 

  33. 33.

    Semino, C. E. (2003). Can We Build Artificial Stem Cell Compartments? Journal of Biomedicine & Biotechnology, 2003(3), 164–169.

    Article  Google Scholar 

  34. 34.

    Wilson, A., Oser, G. M., Jaworski, M., et al. (2007). Dormant and self-renewing hematopoietic stem cells and their niches. Annals of the New York Academy of Sciences, 1106, 64–75.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Sacchetti, B., Funari, A., Michienzi, S., et al. (2007). Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 131(2), 324–336.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Mayack, S. R., & Wagers, A. J. (2008). Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood, 112(3), 519–531.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Rubio, D., García-Castro, J., Martín, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65, 3035–3039.

    PubMed  CAS  Google Scholar 

  38. 38.

    Rubio, D., García, S., Paz, M. F., et al. (2008). Molecular characterization of spontaneous mesenchymal stem cell transformation. PLoS One., 3(1), e1398.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    García, S., Bernad, A., Martín, M. C., et al. (2010). Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Experimental Cell Research, 316, 1648–1650.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Kuhn, N. Z., & Tuan, R. S. (2010). Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. Journal of Cellular Physiology, 222, 268–277.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Ksiazek, K. (2009). A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Research, 12(2), 105–116.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Nakamura, K., Ito, Y., Kawano, Y., et al. (2004). Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Therapy, 11, 1155–1164.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Otsu, K., Das, S., Houser, S. D., et al. (2009). Concentration dependent inhibition of angiogenesis by mesenchymal stem cells. Blood, 113, 4197–4205.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Piscaglia, A. C. (2008). Stem cells, a two edge sword: risks and potentials of regenerative medicine. World Journal of Gastroenterol, 14, 4273–4279.

    Article  Google Scholar 

  45. 45.

    Ehirchiou, D., Kilts, T. M., et al. (2007). Young. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nature Medicine, 13(10), 1219–1227.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Metcalfe, A. D., & Ferguson, M. W. (2008). Skin stem and progenitor cells: using regeneration as a tissue-engineering strategy. Cellular and Molecular Life Sciences, 65, 24–32.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Priya, S. G., Jungvid, H., & Kumar, A. (2008). Skin tissue engineering for tissue repair and regeneration. Tissue Engineering. Part B. Review, 14, 105–118.

    Article  CAS  Google Scholar 

  48. 48.

    Becerra, J., Guerado, E., Claros, S., et al. (2006). Autologous human-derived bone marrow cells exposed to a novel TGF-beta1 fusion protein for the treatment of critically sized tibial defect. Regenerative Medicine, 1, 267–278.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Baksh, D., Zandstra, P. W., & Davies, J. E. (2007). A non-contact suspension culture approach to the culture of osteogenic cells derived from a CD49elow subpopulation of human bone marrow-derived cells. Biotechnology & Bioengineering, 98, 1195–1208.

    Article  CAS  Google Scholar 

  50. 50.

    Fan, J., Varshney, R. R., Ren, L., et al. (2009). Synovium-Derived Mesenchymal Stem Cells: A New Cell Source for Musculoskeletal Regeneration. Tissue Engineering Part B. Review, 15(1), 75–86.

    Article  CAS  Google Scholar 

  51. 51.

    da Silva Meirelles, L., Caplan, A. I., & Nardi, N. B. (2008). In search of the in vivo identity of mesenchymal stem cells. Stem Cells, 26, 2287–2299.

    PubMed  Article  Google Scholar 

  52. 52.

    Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford), 47, 126–131.

    Article  CAS  Google Scholar 

  53. 53.

    Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Valtieri, M., & Sorrentino, A. (2008). The mesenchymal stromal cell contribution to homeostasis. Journal of Cellular Physiology, 217, 296–300.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Orkin, S. H., & Zon, L. I. (2008). Hematopoiesis: An evolving paradigm for stem cell biology. Cell, 132, 631–644.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132, 598–611.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    de la Fuente, R., Abad, J. L., García-Castro, J., et al. (2004). Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Experimental Cell Research, 297(2), 313–328.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Lennon, D. P., Haynesworth, S. E., Arm, D. M., et al. (2000). Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Developmental Dynamic, 219, 50–62.

    Article  CAS  Google Scholar 

  59. 59.

    Caplan, A. I. (2008). All MSCs are pericytes? Cell Stem Cell, 3, 229–230.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Crisan, M., Yap, S., Casteilla, L., et al. (2008). A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell, 3, 301–313.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Díaz-Flores, L., Gutiérrez, R., López-Alonso, A., et al. (1992). Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clinical Orthopaedic. Relatives Research, 275, 280–286.

    Google Scholar 

  62. 62.

    Tavazoie, M., Van der Veken, L., Silva-Vargas, V., et al. (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell, 3, 279–288.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Caplan, A. I. (1994). The mesengenic process. Clinics in Plastic Surgery, 21, 429–435.

    PubMed  CAS  Google Scholar 

  64. 64.

    Liu, Z. J., Zhuge, Y., & Velázquez, O. C. (2009). Trafficking and differentiation of mesenchymal stem cells. Journal Cellular Biochemistry, 106, 984–991.

    Article  CAS  Google Scholar 

  65. 65.

    Zvaifler, N. J., Marinova-Mutafchieva, L., Adams, G., et al. (2000). Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research, 2, 477–488.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Covas, D. T., Panepucci, R. A., Fontes, A. M., et al. (2008). Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146R perivascular cells and fibroblasts. Experimental Hematology, 36, 642–654.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Lozito, T. P., Kuo, C. K., Taboas, J. M., & Tuan, R. S. (2009). Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. Journal Cellular Biochemistry, 107, 714–722.

    Article  CAS  Google Scholar 

  68. 68.

    Tang, W., Zeve, D., Suh, J. M., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322, 583–586.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Cai, X., Lin, Y., Friedrich, C. C., et al. (2009). Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Review and and Reports, 5, 437–445.

    Article  Google Scholar 

  70. 70.

    Caplan, A. I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. Journal of Cellular Physiology, 213, 341–347.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Hunziker, E. B., & Rosenberg, L. C. (1996). Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. Journal of Bone Joint Surgery Amerian, 78, 721–733.

    CAS  Google Scholar 

  72. 72.

    Shintani, N., & Hunziker, E. B. (2007). Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue. Arthritis Rheumatism, 56, 1869–1879.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Lee, S. Y., Nakagawa, T., & Reddi, A. H. (2008). Induction of chondrogenesis and expression of superficial zone protein (SZP)/lubricin by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-beta1 and BMP-7. Biochemical Biophysical Research Communications, 376, 148–153.

    Article  CAS  Google Scholar 

  74. 74.

    Becerra, J. Andrades, J.A. Guerado, E. et al. Articular cartilage: structure and regeneration. Tissue Eng. Part B (Epub ahead of print).

  75. 75.

    Ahmed, T. A., & Hincke, M. T. (2010). Strategies for articular cartilage lesion repair and functional restoration. Tissue Engineering Part B Reviews, 16(3), 305–329.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Mohan, N., & Nair, P. D. (2010). A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Tissue Engineering Part A, 16(2), 373–384.

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Coleman, C.M., Curtin, C., Barry, F.P., O’Flatharta, C., & Murphy, J.M. (2010). Mesenchymal Stem Cells and Osteoarthritis: Remedy or Accomplice? Hum Gene Ther. (Epub ahead of print)

  78. 78.

    Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials, 29, 2941–2953.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science, 324, 26.

    Article  CAS  Google Scholar 

  80. 80.

    Peerani, R., & Zandstra, P. W. (2010). Enabling stem cell therapies through synthetic stem cell-niche engineering. Journal Clinical Investigation, 120(1), 60–70.

    Article  CAS  Google Scholar 

  81. 81.

    Macchiarini, P., Jungebluth, P., Go, T., et al. (2008). Clinical transplantation of a tissue-engineered airway. Lancet, 372(9655), 2023–2030.

    PubMed  Article  Google Scholar 

  82. 82.

    Asnaghi, M. A., Jungebluth, P., Raimondi, M. T., et al. (2009). A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs: from concept to clinical trial. Biomaterials, 30(29), 5260–5269.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Song, J., Kiel, M. J., Wang, Z., et al. (2010). An in vivo model to study and manipulate the hematopoietic stem cell niche. Blood, 115(13), 2592–2600.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. Journal of Pathology, 217, 318–324.

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Park, K. S., Kim, Y. S., Kim, J. H., et al. (2010). Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation., 89, 509–517.

    PubMed  CAS  Google Scholar 

  86. 86.

    Ito, T., Itakura, S., Todorov, I., et al. (2010). Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation., 89, 1438–1445.

    PubMed  Article  Google Scholar 

  87. 87.

    García-Olmo, D., Herreros, D., De-La-Quintana, P., et al. (2010). Adipose-derived stem cells in Crohn's rectovaginal fistula. Case Reports in Medicine, 2010, 961758.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors thank A.H. Reddi and A.I. Caplan for their critical reading of the manuscript. Becerra’s group lab is supported by grants from the Spanish Government (BIO2009-13903-C02-01; PLE2009-0163; PI10/2529 and Red de Terapia Celular, RD06/0010/0014), the Andalusian Government (P07-CVI-2781; PAID, BIO217). Banco Bilbao-Vizcaya-Argentaria Foundation (FBBVA, Chair in Biomedicine 2007 to A.H. Reddi). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.

Disclosures

The authors indicate no potential conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Becerra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Becerra, J., Santos-Ruiz, L., Andrades, J.A. et al. The Stem Cell Niche Should be a Key Issue for Cell Therapy in Regenerative Medicine. Stem Cell Rev and Rep 7, 248–255 (2011). https://doi.org/10.1007/s12015-010-9195-5

Download citation

Keywords

  • Stem cell niche
  • MSC
  • Pericyte
  • Cell therapy
  • Regenerative medicine
  • Tissue engineering