Skip to main content

Advertisement

Log in

Human Multipotent Mesenchymal Stromal Cells from Distinct Sources Show Different In Vivo Potential to Differentiate into Muscle Cells When Injected in Dystrophic Mice

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Limb-girdle muscular dystrophies are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence or deficiency of muscle proteins. The murine model of Limb-Girdle Muscular Dystrophy 2B, the SJL mice, carries a deletion in the dysferlin gene. Functionally, this mouse model shows discrete muscle weakness, starting at the age of 4–6 weeks. The possibility to restore the expression of the defective protein and improve muscular performance by cell therapy is a promising approach for the future treatment of progressive muscular dystrophies (PMD). We and others have recently shown that human adipose multipotent mesenchymal stromal cells (hASCs) can differentiate into skeletal muscle when in contact with dystrophic muscle cells in vitro and in vivo. Umbilical cord tissue and adipose tissue are known rich sources of multipotent mesenchymal stromal cells (MSCs), widely used for cell-based therapy studies. The main objective of the present study is to evaluate if MSCs from these two different sources have the same potential to reach and differentiate in muscle cells in vivo or if this capability is influenced by the niche from where they were obtained. In order to address this question we injected human derived umbilical cord tissue MSCs (hUCT MSCs) into the caudal vein of SJL mice with the same protocol previously used for hASCs; we evaluated the ability of these cells to engraft into recipient dystrophic muscle after systemic delivery, to express human muscle proteins in the dystrophic host and their effect in functional performance. These results are of great interest for future therapeutic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood! Stem Cells, 26, 146–50.

    Article  CAS  PubMed  Google Scholar 

  2. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–28.

    Article  CAS  PubMed  Google Scholar 

  3. Gang, E. J., Jeong, J. A., Hong, S. H., et al. (2004). Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells, 22, 617–24.

    Article  PubMed  Google Scholar 

  4. Gronthos, S., Brahim, J., Li, W., et al. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81, 531–5.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103, 1669–75.

    Article  CAS  PubMed  Google Scholar 

  6. Jazedje, T., Perin, P. M., Czeresnia, C. E., et al. (2009). Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. Journal of Translational Medicine, 7, 46.

    Article  PubMed  Google Scholar 

  7. Bittner, R. E., Anderson, L. V., Burkhardt, E., et al. (1999). Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B. Nature Genetics, 23, 141–2.

    Article  CAS  PubMed  Google Scholar 

  8. Heslop, L., Morgan, J. E., & Partridge, T. A. (2000). Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. Journal of Cell Science, 113(Pt 12), 2299–308.

    CAS  PubMed  Google Scholar 

  9. Laguens, R. (1963). Satellite cells of skeletal muscle fibers in human progressive muscular dystrophy. Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, 336, 564–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 13625–30.

    Article  CAS  PubMed  Google Scholar 

  11. Gussoni, E., Soneoka, Y., Strickland, C. D., et al. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 401, 390–4.

    CAS  PubMed  Google Scholar 

  12. Sampaolesi, M., Blot, S., D’Antona, G., et al. (2006). Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature, 444, 574–9.

    Article  CAS  PubMed  Google Scholar 

  13. Chan, J., Waddington, S. N., O’Donoghue, K., et al. (2007). Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells, 25, 875–84.

    Article  CAS  PubMed  Google Scholar 

  14. Kong, K. Y., Ren, J., Kraus, M., Finklestein, S. P., & Brown, R. H., Jr. (2004). Human umbilical cord blood cells differentiate into muscle in sjl muscular dystrophy mice. Stem Cells, 22, 981–93.

    Article  CAS  PubMed  Google Scholar 

  15. Vieira, N. M., Brandalise, V., Zucconi, E., et al. (2008). Human multipotent adipose-derived stem cells restore dystrophin expression of Duchenne skeletal-muscle cells in vitro. Biology of the Cell, 100, 231–41.

    Article  CAS  PubMed  Google Scholar 

  16. Vieira, N. M., Bueno, C. R., Jr., Brandalise, V., et al. (2008). SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells, 26, 2391–8.

    Article  PubMed  Google Scholar 

  17. Secco, M., Zucconi, E., Vieira, N. M., et al. (2008). Mesenchymal stem cells from umbilical cord: do not discard the cord! Neuromuscular Disorders, 18, 17–8.

    Article  PubMed  Google Scholar 

  18. Secco, M., Moreira, Y. B., Zucconi, E., et al. (2009). Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Reviews and Reports, 5, 387–401.

    Google Scholar 

  19. Thanh, L. T., Nguyen, T. M., Helliwell, T. R., & Morris, G. E. (1995). Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin. American Journal of Human Genetics, 56, 725–31.

    CAS  PubMed  Google Scholar 

  20. Kennel, P. F., Fonteneau, P., Martin, E., et al. (1996). Electromyographical and motor performance studies in the pmn mouse model of neurodegenerative disease. Neurobiology of Disease, 3, 137–47.

    Article  CAS  PubMed  Google Scholar 

  21. Davies, K. E., & Grounds, M. D. (2006). Treating muscular dystrophy with stem cells? Cell, 127, 1304–6.

    Article  CAS  PubMed  Google Scholar 

  22. Leriche-Guerin, K., Anderson, L. V., Wrogemann, K., Roy, B., Goulet, M., & Tremblay, J. P. (2002). Dysferlin expression after normal myoblast transplantation in SCID and in SJL mice. Neuromuscular Disorders, 12, 167–73.

    Article  CAS  PubMed  Google Scholar 

  23. Partridge, T. A., Morgan, J. E., Coulton, G. R., Hoffman, E. P., & Kunkel, L. M. (1989). Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature, 337, 176–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zucconi, E., Vieira, N. M., Bueno, D. F., et al. (2009). Mesenchymal stem cells derived from canine umbilical cord vein—a novel source for cell therapy studies. Stem Cells and Development, 19, 395–402.

    Article  Google Scholar 

  25. Groshong, J. S., Spencer, M. J., Bhattacharyya, B. J., et al. (2007). Calpain activation impairs neuromuscular transmission in a mouse model of the slow-channel myasthenic syndrome. Journal of Clinical Investigation, 117, 2903–12.

    Article  CAS  PubMed  Google Scholar 

  26. Simon, D., Seznec, H., Gansmuller, A., et al. (2004). Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. The Journal of Neuroscience, 24, 1987–95.

    Article  CAS  PubMed  Google Scholar 

  27. Yonemori, F., Yamaguchi, T., Yamada, H., & Tamura, A. (1998). Evaluation of a motor deficit after chronic focal cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 18, 1099–106.

    Article  CAS  PubMed  Google Scholar 

  28. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8, 726–36.

    Article  CAS  PubMed  Google Scholar 

  29. Klyushnenkova, E., Mosca, J. D., Zernetkina, V., et al. (2005). T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. Journal of Biomedical Science, 12, 47–57.

    Article  CAS  PubMed  Google Scholar 

  30. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E., & Ringden, O. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology, 57, 11–20.

    Article  PubMed  Google Scholar 

  31. Bartholomew, A., Sturgeon, C., Siatskas, M., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30, 42–8.

    Article  PubMed  Google Scholar 

  32. Spencer, M. J., Montecino-Rodriguez, E., Dorshkind, K., & Tidball, J. G. (2001). Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clinical Immunology, 98, 235–43.

    Article  CAS  PubMed  Google Scholar 

  33. Le Blanc, K., Frassoni, F., Ball, L., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–86.

    Article  PubMed  Google Scholar 

  34. Jazedje, T., Secco, M., Vieira, N. M., et al. (2009). Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro. Journal of Translational Medicine, 7, 6.

    Article  PubMed  Google Scholar 

  35. Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., & Tsuchida, K. (2010). Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nature Cell Biology, 12, 143–52.

    Article  CAS  PubMed  Google Scholar 

  36. Joe, A. W., Yi, L., Natarajan, A., et al. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 12, 153–63.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, K., Doi, A., Wen, B., et al. (2010). Epigenetic memory in induced pluripotent stem cells. Nature.

  38. Pelz, O., Wu, M., Nikolova, T., et al. (2005). Duplex polymerase chain reaction quantification of human cells in a murine background. Stem Cells, 23, 828–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge our colleagues Marcos Valadares, Tatiana Jazedje, Amanda Assoni, Mayra Pelatti, Juliana Gomes, Gabriela Polster, Camila Almeida, Agnes Nishimura, Natale Cavaçana, Miguel Mitne-Neto, Monize Lazar, Constancia Urbani, David Schlesinger, Daniela Bueno, Roberto Fanganiello, Antonia M P Cerqueira, Marta Canovas, Paula Onofre and Dr. Maria Rita Passos-Bueno for helpful suggestions. We thank Dr. Glenn Morris from the Center for Inherited Neuromuscular Disease (CIND), RJAH Orthopaedic Hospital, Oswestry, Shropshire, UK for providing anti-human dystrophin antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zatz.

Additional information

N. M. Vieira and E. Zucconi contributed equally for this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieira, N.M., Zucconi, E., Bueno, C.R. et al. Human Multipotent Mesenchymal Stromal Cells from Distinct Sources Show Different In Vivo Potential to Differentiate into Muscle Cells When Injected in Dystrophic Mice. Stem Cell Rev and Rep 6, 560–566 (2010). https://doi.org/10.1007/s12015-010-9187-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9187-5

Keywords

Navigation