Skip to main content


Log in

Bone marrow Derived Pluripotent Cells are Pericytes which Contribute to Vascularization

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

A Correction to this article was published on 08 November 2018

An Erratum to this article was published on 20 November 2009

This article has been updated


Pericytes are essential to vascularization, but the purification and characterization of pericytes remain unclear. Smooth muscle actin alpha (α-SMA) is one maker of pericytes. The aim of this study is to purify the α-SMA positive cells from bone marrow and study the characteristics of these cells and the interaction between α-SMA positive cells and endothelial cells. The bone marrow stromal cells were harvested from α-SMA-GFP transgenic mice, and the α-SMA-GFP positive cells were sorted by FACS. The proliferative characteristics and multilineage differentiation ability of the α-SMA-GFP positive cells were tested. A 3-D culture model was then applied to test their vascularization by loading α-SMA-GFP positive cells and endothelial cells on collagen-fibronectin gel. Results demonstrated that bone marrow stromal cells are mostly α-SMA-GFP positive cells which are pluripotent, and these cells expressed α-SMA during differentiation. The α-SMA-GFP positive cells could stimulate the endothelial cells to form tube-like structures and subsequently robust vascular networks in 3-D culture. In conclusion, the bone marrow derived pluripotent cells are pericytes and can contribute to vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 08 November 2018

    Please note the following errors in the original version.


  1. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–6.

    Article  CAS  PubMed  Google Scholar 

  2. Caplan, A. I. (2000). Tissue engineering designs for the future: new logics, old molecules. Tissue Eng, 6(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  3. Melero-Martin, J. M., De Obaldia, M. E., Kang, S. Y., et al. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res, 103(2), 194–202.

    Article  CAS  PubMed  Google Scholar 

  4. Traktuev, D. O., Prater, D. N., Merfeld-Clauss, S., et al. (2009). Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res, 104(12), 1410–20.

    Article  CAS  PubMed  Google Scholar 

  5. Armulik, A., Abramsson, A., & Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ Res, 97(6), 512–23.

    Article  CAS  PubMed  Google Scholar 

  6. Levenberg, S., Rouwkema, J., Macdonald, M., et al. (2005). Engineering vascularized skeletal muscle tissue. Nat Biotechnol, 23(7), 879–84.

    Article  CAS  PubMed  Google Scholar 

  7. Crisan, M., Yap, S., Casteilla, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–13.

    Article  CAS  PubMed  Google Scholar 

  8. Shepherd, B. R., Chen, H. Y., Smith, C. M., Gruionu, G., Williams, S. K., & Hoying, J. B. (2004). Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol, 24(5), 898–904.

    Article  CAS  PubMed  Google Scholar 

  9. Tremblay, P. L., Hudon, V., Berthod, F., Germain, L., & Auger, F. A. (2005). Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant, 5(5), 1002–10.

    Article  PubMed  Google Scholar 

  10. Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J. S., & Jain, R. K. (2004). Tissue engineering: creation of long-lasting blood vessels. Nature, 428(6979), 138–9.

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen, L. L., & D'Amore, P. A. (2001). Cellular interactions in vascular growth and differentiation. Int Rev Cytol, 204, 1–48.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, Y., Wang, J., Scott, P. G., & Tredget, E. E. (2007). Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen, 15(Suppl 1), S18–26.

    Article  PubMed  Google Scholar 

  13. Caplan, A. I. (2008). All MSCs are pericytes? Cell Stem Cell, 3(3), 229–30.

    Article  CAS  PubMed  Google Scholar 

  14. Kalajzic, Z., Li, H., Wang, L. P., et al. (2008). Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone, 43(3), 501–10.

    Article  CAS  PubMed  Google Scholar 

  15. Yokota, T., Kawakami, Y., Nagai, Y., et al. (2006). Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin-expressing cells. Stem Cells, 24(1), 13–22.

    Article  PubMed  Google Scholar 

  16. Cai, X., Lin, Y., Ou, G., et al. (2007). Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system. Cell Biol Int, 31(8), 776–83.

    Article  CAS  PubMed  Google Scholar 

  17. Lin, Y., Chen, X., Yan, Z., et al. (2006). Multilineage differentiation of adipose-derived stromal cells from GFP transgenic mice. Mol Cell Biochem, 285(1–2), 69–78.

    CAS  PubMed  Google Scholar 

  18. Wu L, Cai X, Dong H, et al. Serum regulates adipogenesis of mesenchymal stem cells via MEK/ERK dependent PPARgamma expression and phosphorylation. J Cell Mol Med 2009.

  19. Verseijden F, Posthumus-van Sluijs S, Pavljasevic P, Hofer S, van Osch G, Farrell E. Adult human bone marrow- and adipose tissue-derived stromal cells support the formation of prevascular-like structures from endothelial cells in vitro. Tissue Eng Part A 2009.

  20. Lin, Y. F., Jing, W., Wu, L., et al. (2008). Identification of osteo-adipo progenitor cells in fat tissue. Cell Prolif, 41(5), 803–12.

    Article  CAS  PubMed  Google Scholar 

  21. Tang, W., Zeve, D., Suh, J. M., et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science, 322(5901), 583–6.

    Article  CAS  PubMed  Google Scholar 

  22. Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135(2), 240–9.

    Article  CAS  PubMed  Google Scholar 

  23. von Tell, D., Armulik, A., & Betsholtz, C. (2006). Pericytes and vascular stability. Exp Cell Res, 312(5), 623–9.

    Article  Google Scholar 

  24. Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. J Pathol, 217(2), 318–24.

    Article  CAS  PubMed  Google Scholar 

  25. Haynesworth, S. E., Baber, M. A., & Caplan, A. I. (1996). Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol, 166(3), 585–92.

    Article  CAS  PubMed  Google Scholar 

  26. Rouwkema, J., de Boer, J., & Van Blitterswijk, C. A. (2006). Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng, 12(9), 2685–93.

    Article  CAS  PubMed  Google Scholar 

  27. Akita, M., Murata, E., Merker, H. J., & Kaneko, K. (1997). Formation of new capillary-like tubes in a three-dimensional in vitro model (aorta/collagen gel). Ann Anat, 179(2), 137–47.

    CAS  PubMed  Google Scholar 

Download references


This work was funded by the Anthony and Constance Franchi Fund for Pediatric Orthopaedics at the MassGeneral Hospital for Children, The Peabody Foundation Inc., the National Natural Science Foundation of China (30801304), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD 200977) and Program for New Century Excellent Talents in University (NCET-08-0373).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Yunfeng Lin or Brian E. Grottkau.

Additional information

Study conducted at the Pediatric Orthopaedic Laboratory for Tissue Engineering, Mass General Hospital for Children, Boston, MA, USA.

An erratum to this article can be found at

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, X., Lin, Y., Friedrich, C.C. et al. Bone marrow Derived Pluripotent Cells are Pericytes which Contribute to Vascularization. Stem Cell Rev and Rep 5, 437–445 (2009).

Download citation

  • Published:

  • Issue Date:

  • DOI: