Stem Cell Reviews

, Volume 3, Issue 2, pp 169–175 | Cite as

Mammary Stem Cells and Breast Cancer—Role of Notch Signalling

  • Gillian Farnie
  • Robert B. ClarkeEmail author


Adult stem cells are found in numerous tissues of the body and play a role in tissue development, replacement and repair. Evidence shows that breast stem cells are multipotent and can self renew, which are key characteristics of stem cells, and a single cell enriched with cell surface markers has the ability to grow a fully functional mammary gland in vivo. Many groups have extrapolated the cancer stem cell hypothesis from the haematopoietic system to solid cancers, where using in vitro culture techniques and in vivo transplant models have established evidence of cancer stem cells in colon, pancreas, prostate, brain and breast cancers. In the report we describe the evidence for breast cancer stem cells; studies consistently show that stem cell like and breast cancer initiating populations can be enriched using cell surface makers CD44+/CD24 and have upregulated genes which include Notch. Notch signalling has been highlighted as a pathway involved in the development of the breast and is frequently dysregulated in invasive breast cancer. We have investigated the role of Notch in a pre-invasive breast lesion, ductal carcinoma in situ (DCIS), and have found that aberrant activation of Notch signalling is an early event in breast cancer. High expression of Notch 1 intracellular domain (NICD) in DCIS also predicted a reduced time to recurrence 5 years after surgery. Using a non-adherent sphere culture technique we have grown DCIS mammospheres from primary DCIS tissue, where self-renewal capacity, measured by the number of mammosphere initiating cells, were increased from normal breast tissue. A γ-secretase inhibitor, DAPT, which inhibits all four Notch receptors and a Notch 4 neutralising antibody were shown to reduce DCIS mammosphere formation, indicating that Notch signalling and other stem cell self-renewal pathways may represent novel therapeutic targets to prevent recurrence of pre-invasive and invasive breast cancer.


Cancer Stem Cell Notch Signalling Side Population DAPT Mammary Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Morrison, S. J., Shah, N. M., & Anderson, D. J. (1997). Regulatory mechanisms in stem cell biology. Cell, 88(3), 287–298.PubMedCrossRefGoogle Scholar
  2. 2.
    Weissman, I. L. (2000). Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100(1), 157–168.PubMedCrossRefGoogle Scholar
  3. 3.
    Deome, K. B., Faulkin, L. J., Jr., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520.PubMedGoogle Scholar
  4. 4.
    Hoshino, K., & Gardner, W. U. (1967). Transplantability and life span of mammary gland during serial transplantation in mice. Nature, 213(5072), 193–194.PubMedCrossRefGoogle Scholar
  5. 5.
    Daniel, C. W., De Ome, K. B., Young, J. T., Blair, P. B., & Faulkin, L. J., Jr. (1968). The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 53–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Ormerod, E. J., & Rudland, P. S. (1986). Regeneration of mammary glands in vivo from isolated mammary ducts. Journal of Embryology and Experimental Morphology, 96, 229–243.PubMedGoogle Scholar
  7. 7.
    Novelli, M., Cossu, A., Oukrif, D., Quaglia, A., Lakhani, S., Poulsom, R., et al. (2003). X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3311–3314.PubMedCrossRefGoogle Scholar
  8. 8.
    Tsai, Y. C., Lu, Y., Nichols, P. W., Zlotnikov, G., Jones, P. A., & Smith, H. S. (1996). Contiguous patches of normal human mammary epithelium derived from a single stem cell: Implications for breast carcinogenesis. Cancer Research, 56(2), 402–404.PubMedGoogle Scholar
  9. 9.
    Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developments in Biologicals, 245(1), 42–56.Google Scholar
  10. 10.
    Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Developments in Biologicals, 277(2), 443–456.Google Scholar
  11. 11.
    Clayton, H., Titley, I., & Vivanco, M. (2004). Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Experimental Cell Research, 297(2), 444–460.PubMedCrossRefGoogle Scholar
  12. 12.
    Alvi, A. J., Clayton, H., Joshi, C., Enver, T., Ashworth, A., Vivanco, M. M., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 5(1), R1–R8.PubMedCrossRefGoogle Scholar
  13. 13.
    Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270.CrossRefGoogle Scholar
  14. 14.
    Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., et al. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Natural Medicines, 3(12), 1337–1345.CrossRefGoogle Scholar
  15. 15.
    Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439(7072), 84–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439(7079), 993–997.PubMedGoogle Scholar
  17. 17.
    Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 3(12), 895–902.PubMedCrossRefGoogle Scholar
  18. 18.
    Dontu, G., Al-Hajj M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36(Suppl 1), 59–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.PubMedCrossRefGoogle Scholar
  20. 20.
    Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMedCrossRefGoogle Scholar
  21. 21.
    Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., & Steindler, D. A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 39(3), 193–206.PubMedCrossRefGoogle Scholar
  22. 22.
    Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63(18), 5821–5828.PubMedGoogle Scholar
  23. 23.
    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., et al.. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.PubMedCrossRefGoogle Scholar
  24. 24.
    Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., & Bronner-Fraser, M., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15178–15183.PubMedCrossRefGoogle Scholar
  25. 25.
    Collins, A. T., Berrym, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65(23), 10946–10951.PubMedCrossRefGoogle Scholar
  26. 26.
    Lawson, D. A., Xin, L., Lukacs, R. U., Cheng, D., & Witte, O. N., (2007). Isolation and functional characterization of murine prostate stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 181–186.PubMedCrossRefGoogle Scholar
  27. 27.
    Li, C., Heidt D. G., Dalerba P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67(3), 1030–1037.PubMedCrossRefGoogle Scholar
  28. 28.
    O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.PubMedCrossRefGoogle Scholar
  29. 29.
    Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.PubMedCrossRefGoogle Scholar
  30. 30.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, J. C., & Dick, J. E. (2005). Cancer stem cells: Lessons from leukemia. Trends in Cell Biology, 15(9), 494–501.PubMedCrossRefGoogle Scholar
  32. 32.
    Ponti, D., Costam, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Research, 65(13), 5506–5511.PubMedCrossRefGoogle Scholar
  33. 33.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., & Tang, D. G. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Research, 65(14), 6207–6219.PubMedCrossRefGoogle Scholar
  34. 34.
    Woodward, W. A., Chen, M. S., Behbod, F., Alfaro, M. P., Buchholz, T. A., & Rosen, J. M. (2007). WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 618–663.PubMedCrossRefGoogle Scholar
  35. 35.
    Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute, 98(24), 1777–1785.PubMedCrossRefGoogle Scholar
  36. 36.
    Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu, B. Y., McDermott, S. P., Khwaja, S. S., & Alexander, C. M. (2004). The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4158–4163.PubMedCrossRefGoogle Scholar
  38. 38.
    Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamarro, M., Zhang, X., et al. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100(26), 15853–15858.PubMedCrossRefGoogle Scholar
  39. 39.
    Dontu, G., Wicha, M. S. (2005). Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. Journal of Mammary Gland Biology and Neoplasia, 10(1), 75–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M., & Wicha, M. S. et al. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Research, 6(6), R605–R615.PubMedCrossRefGoogle Scholar
  41. 41.
    Stylianou, S., Clarke, R. B., & Brennan, K. (2006). Aberrant activation of notch signaling in human breast cancer. Cancer Research, 66(3), 1517–1525.PubMedCrossRefGoogle Scholar
  42. 42.
    Kritikou, E. A., Sharkey, A., Abell, K., Came, P. J., Anderson, E., Clarkson, R. W., et al. (2003). A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development, 130(15), 3459–3468.PubMedCrossRefGoogle Scholar
  43. 43.
    Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. American Journal of Pathology, 167(2), 409–417.PubMedGoogle Scholar
  44. 44.
    Boulanger, C. A., Wagner, K. U., & Smith, G. H. (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene, 24(4), 552–560.PubMedCrossRefGoogle Scholar
  45. 45.
    Lai, E. C. (2004). Notch signaling: Control of cell communication and cell fate. Development, 131(5), 965–973.PubMedCrossRefGoogle Scholar
  46. 46.
    Politi, K., Feirt, N., & Kitajewski, J. (2004). Notch in mammary gland development and breast cancer. Seminars in Cancer Biology, 14(5), 341–347.PubMedCrossRefGoogle Scholar
  47. 47.
    Nichols, J. T., Miyamoto, A., Olsen, S. L., D’Souza, B., Yao, C., & Weinmaster, G. (2007). DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. Journal of Cell Biology, 176(4), 445–458.PubMedCrossRefGoogle Scholar
  48. 48.
    de la Pompa, J. L., Wakeham, A., Correia, K. M., Samper, E., Brown, S., Aguilera, R. J., et al. (1997). Conservation of the Notch signalling pathway in mammalian neurogenesis. Development, 124(6), 1139–1148.PubMedGoogle Scholar
  49. 49.
    Ross, D. A., Rao, P. K., & Kadesch, T. (2004). Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes. Molecular and Cellular Biology, 24(8), 3505–3513.PubMedCrossRefGoogle Scholar
  50. 50.
    Uyttendaele, H., Soriano, J. V., Montesano, R., & Kitajewski, J. (1998). Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Developments in Biologicals, 196(2), 204–217.CrossRefGoogle Scholar
  51. 51.
    Gallahan, D., Jhappan, C., Robinson, G., Hennighausen, L., Sharp, R., Kordon, E. et al. (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Research, 56(8), 1775–1785.PubMedGoogle Scholar
  52. 52.
    Smith, G. H., Gallahan, D., Diella, F., Jhappan, C., Merlino, G., & Callahan, R. (1995). Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth & Differentiation, 6(5), 563–577.Google Scholar
  53. 53.
    Jhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G. H., Merlino, G., et al. (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes & Development, 6(3), 345–355.CrossRefGoogle Scholar
  54. 54.
    Pece, S., Serresi, M., Santolini, E., Capra, M., Hulleman, E., Galimberti, V., et al. (2004). Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. Journal of Cell Biology, 167(2), 215–221.PubMedCrossRefGoogle Scholar
  55. 55.
    Reedijk, M., Odorcic, S., Chang, L., Zhang, H., Miller, N., McCready, D. R., et al. (2005). High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Research, 65(18), 8530–8537.PubMedCrossRefGoogle Scholar
  56. 56.
    Sansone, P., Storci, G., Giovannini, C., Pandolfi, S., Pianetti, S., Taffurelli, M., et al. (2007). p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells, 25(3), 807–815.PubMedCrossRefGoogle Scholar
  57. 57.
    Shipitsin, M., Campbell, L. L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, J., et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell, 11(3), 259–273.PubMedCrossRefGoogle Scholar
  58. 58.
    Farnie, G., Clarke, R. B., Spence, K., Pinnock, N., Brennan, K., Anderson, N. G., et al. (2007). Novel cell culture technique for primary ductal carcinoma in situ: Role of Notch and EGF receptor signaling pathways. Journal of the National Cancer Institute, 99(8), 616–627.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Breast Biology Group, Division of Cancer Studies, Faculty of Medicine and Human SciencesUniversity of Manchester, Paterson Institute for Cancer ResearchManchesterUK

Personalised recommendations